Artificial intelligence

Artificial Intelligence in the healthcare of older people

Published on: 20th March, 2020

OCLC Number/Unique Identifier: 8559314473

Clinical applications of Artificial Intelligence (AI) in healthcare are relatively rare. The high expectations in relation to data analysis influencing general healthcare have not materialized, with few exceptions, and then predominantly in the field of rare diseases, oncology and pathology, and interpretation of laboratory results. While electronic health records, introduced over the last decade or so in the UK have increased access to medical and treatment histories of patients, diagnoses, medications, treatment plans, immunization dates, allergies, radiology images, laboratory and test results, these have potential for evidence-based tools that providers can use to make decisions about a patient’s care, as well as streamline workflow. In the following text, we review the advances achieved using machine learning and deep learning technology, as well as robot use and telemedicine in the healthcare of older people. Key points: 1. Artificial Intelligence use is extensively explored in prevention, diagnosis, novel drug designs and after-care. 2. AI studies on older adults include a small number of patients and lack reproducibility needed for their wider clinical use in different clinical settings and larger populations. 3. Telemedicine and robot assisted technology are well received by older service users. 4. Ethical concerns need to be resolved prior to wider AI use in routine clinical setting.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

What can Mathematics say about unsolved problems in Medicine?

Published on: 3rd January, 2018

OCLC Number/Unique Identifier: 7355939664

Nobody doubts that mathematics plays a crucial role in medical achievements. It is certain that is being mainly used in statistics and physics for biomedical problems [1]. For sure that we have already heard about how mathematics can improve the anticancer arsenal [2]. Quantitative genetics have triggered a giant potential in medical care [3,4]. And mathematical algorithms, provided by artificial intelligence, continuously boost new therapeutic paradigms [5,6]. Nonetheless, one cannot ignore the ability of mathematics for analyzing ideas.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A review article on artificial intelligence

Published on: 19th May, 2021

OCLC Number/Unique Identifier: 9048248509

Artificial intelligence (AI) is the emulation of human intelligence in computers that have been trained to think and behave like humans. The word may also refer to any computer that exhibits human-like characteristics like learning and problem-solving. Artificial intelligence is intelligence demonstrated by machines, as opposed to natural intelligence, which involves consciousness and emotionality and is demonstrated by humans and animals [1].
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Applications of convolutional neural networks in chest X-ray analyses for the detection of COVID-19

Published on: 20th January, 2022

Throughout global efforts to defend against the spread of COVID-19 from late 2019 up until now, one of the most crucial factors that has helped combat the pandemic is the development of various screening methods to detect the presence of COVID-19 as conveniently and accurately as possible. One of such methods is the utilization of chest X-Rays (CXRs) to detect anomalies that are concurrent with a patient infected with COVID-19. While yielding results much faster than the traditional RT-PCR test, CXRs tend to be less accurate. Realizing this issue, in our research, we investigated the applications of computer vision in order to better detect COVID-19 from CXRs. Coupled with an extensive image database of CXRs of healthy patients, patients with non-COVID-19 induced pneumonia, and patients positive with COVID-19, convolutional neural networks (CNNs) prove to possess the ability to easily and accurately identify whether or not a patient is infected with COVID-19 in a matter of seconds. Borrowing and adjusting the architectures of three well-tested CNNs: VGG-16, ResNet50, and MobileNetV2, we performed transfer learning and trained three of our own models, then compared and contrasted their differing precisions, accuracies, and efficiencies in correctly labeling patients with and without COVID-19. In the end, all of our models were able to accurately categorize at least 94% of the CXRs, with some performing better than the others; these differences in performance were largely due to the contrasting architectures each of our models borrowed from the three respective CNNs.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat