Chromium

Micronutrient deficiency, a novel nutritional risk factor for insulin resistance and Syndrom X

Published on: 30th November, 2018

OCLC Number/Unique Identifier: 8465489491

Emerging evidence indicates that micronutrient deficiency could play a significant role in the pathogenesis and progression of many chronic diseases including diabetes mellitus, hypertension, obesity, dyslipidemia, hyperuricemia, kidney disease, cancer, anemia and other cardio-metabolic and neurodegenerative diseases through the induction of Insulin resistance (IR). However, there are still gaps in our scientific knowledge regarding the links between micronutrient deficiencies, IR, and cardio metabolic disorders. This review provides current information on recent advances and a global perspective regarding the relationship between micronutrient deficiency, IR, and cardio metabolic disorders. Empirical evidence indicates that deficiencies in either micronutrients associated with insulin activity (such as Chromium, manganese, magnesium, and iron) or antioxidant enzyme cofactors (such as vitamin A, copper, zinc, and manganese) could impact several physiological processes leading to a cascade of metabolic and biochemical derangements such as B-cell apoptosis, loss of islet cell mass, defective tyrosine kinase activity, oxidative stress, pancreatic β-cell dysfunction, reduction in lean body mass, defective insulin signaling mechanism, elevated protein kinase C activity, and excess intracellular calcium. Collaboratively, these states of metabolic malfunctioning are associated with IR, which triggers the onset of many cardio metabolic diseases. Undoubtedly, the prevention of micronutrient deficiency may indeed ameliorate the incidence of IR and cardio-metabolic disorders in those at risk and in the general population.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Chromium Isotopes Detection in their Ores with Minimal Errors

Published on: 4th September, 2018

OCLC Number/Unique Identifier: 7877898834

The industrial production and use of chromium have grown considerably during the past five decades. Abundances of the chromium isotopes in terrestrial samples are identical to 0.01%. Among the dominant species of chromium, the trivalent form widely occurs in nature in chromite ores which is extremely immobilized especially in water bodies. Samples were mixtures of separated chromium isotopes and the calibration was made with the same species as those used in the measurements. The method had simplified the conversion of the ores to chromyl fluoride since the element could be readily separated as lead chromate from the leaching of chromite-sodium peroxide fusions. Isotope assay of chromyl fluoride under certain conditions was measured and the measurements of chromium isotopic anomalies ratios and isotope abundance of the chromite ores have been assessed. These provided sufficient quantitative mass spectrometric data, which were analyzed to calculate the abundance and the mean atomic mass of the questioned isotopes. Based on the high mass spectroscopy stability and the correction factors, the results were of good precision (incl. negligible systematic errors normally associated to inter-laboratory discrepancies) and the Cr isotopes availability (52Cr > 53Cr > 50Cr > 54Cr) was in conjunction with other classical tools such as oxygen isotopes. This paper is important for paleoecological, environmental, archeological, forensic, and nuclear researchers.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Removal of Chromium from Aqueous Solution by Thermally Treated Mgal Layered Double Hydroxide

Published on: 11th January, 2017

OCLC Number/Unique Identifier: 7286428770

MgAl based layered double hydroxide (MgAl-LDH) was used as adsorbent for the removal of chromium oxyanion from an aqueous solution. MgAl-LDH was synthesized successfully using co-precipitation method, and was characterized by X-Ray Diffractometer (XRD), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). MgAl-LDH was thermally treated for improving the chromium adsorption. Samples were treated at 220°C and 450°C. A negligible difference of total chromium adsorption capacities was observed between MgAl-LDH000 and MgAl-LDH220 as 12.56 mg/g and 11.01 mg/g. The maximum chromium adsorption capacity of MgAl-LDH was 88.07 mg/g at 500g/l chromium concentration for MgAl-LDH which has been thermally treated at 450°C (MgAl-LDH450). The results indicated that memory effects of thermally treated MgAl-LDH at certain temperatures were retained and enhanced chromium removal efficiency.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Effect of cement solidification on strength and leaching properties of Heavy Metals Contaminated Soil

Published on: 13th August, 2018

OCLC Number/Unique Identifier: 7844539292

This study investigated the effect of Portland cement on stabilization of heavy metal contaminated clayey soils that may give range of geo environemntal benefits. The absolute concentration of heavy metals: Lead (Pb), Zinc (Zn), Chromium (Cr), Cadmium (Cd) and Copper (Cu) were measured using an inductively coupled plasma atomic emission spectroscopy (ICP-AES). A series of laboratory scale experiments such as unconfined compression test (UCT), pH test and synthetic precipitation leaching procedure (SPLP) were performed to study the effects of curing time and cement content on the unconfined compressive strength (UCS) and leaching characteristics of heavy metals. According to results, excessive concentration of heavy metals are present in the topsoil of Shanghai Jiao Tong University (SJTU) among which Pb, Zn and Cd were most prominent. Other test results showed that the dry density of both C4 and C8 soil samples increases with curing time. Similarly the compressive strength (qu)of C4 and C8 samples at 21 d of curing increases by 40% (113 kPa-288 kPa) and 15% (745kPa-864 kPa) respectively, as compared to the 7 d of curing. Besides, the test results showed a prominent decrease in the leached concentration of heavy metals with increasing curing time.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Evaluation of Heavy Metals Concentration in Poultry Feed and Poultry Products

Published on: 11th July, 2023

The study was conducted to determine the absorption of essential and non-essential trace minerals from poultry feed to poultry products. Poultry feed, liver, muscles, and egg samples were collected from six poultry farms in Rawalpindi and Islamabad. Mercury, Lead, Cadmium, Chromium, and Iron were analyzed in the samples using Inductively Coupled Plasma Optical Emission Spectrophotometer. Iron, Lead, and Chromium exceeded the permissible limits set by World Health Organization and National Research Council in Poultry feed. Lead was high in the liver, breast muscles, thigh muscles, egg albumen, and egg yolk. Chromium was found in feed, egg yolk, egg albumen, and two (02) of the liver and breast muscle samples. Mercury was not detected in any of the samples. The liver contains significantly higher concentrations of detected heavy metals as compared to thigh and breast muscles and egg yolk contained significantly high concentrations of Iron, Cadmium, and Lead as compared to egg albumen. Standards requirements for feed manufacturers and poultry farmers should be maintained to monitor and mitigate routes of entry of contaminants in the food chain.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Evaluation of Heavy Metals in Commercial Baby Foods

Published on: 21st February, 2024

Nutritious and safe foods are essential to meet normal physiological and metabolic functions. This study evaluated heavy metals in selected food products for newborns and toddlers. These substances may result in adverse health risks and young children are extremely vulnerable due to their immature immune systems and organs. Industrialization and technological advancement have contributed to an increase in heavy metals in the soil; therefore, entering the food system in potentially harmful amounts. Safe levels have been established by monitoring agencies to reduce the presence of heavy metals. Ten national brands of baby foods were analyzed for selected heavy metals. The main ingredients ranged from vegetables, fruits, dairy, poultry, meats, and grains. The products were analyzed in triplicates using QQQ-ICP-MS instrumentation to detect the presence of arsenic, cadmium, zinc, lead, nickel, aluminum, and chromium. Based on the Agency for Toxic Substances and Disease Registry [1] guidelines for safe quantities, aluminum (4.09 µg/g and 2.50 µg/g) and zinc (33.5 µg/g 69.5 µg/g, and 30.2 µg/g) exceeded the recommended levels of 1 µg/g/day and 2 - 3 µg/g /day respectively. Mixed model analysis found significant differences in metal concentrations (F6,24 = 2.75, p = 0.03) with an average metal concentration of 0.96 µg/g. However, no significant correlations were found between the packaging materials used and the observed metal concentrations in the food samples. The study concluded that the presence of heavy metals may be due to food type and the soil on which it is grown and not the packaging materials, establishing food system contamination by heavy metals.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?