Microparticles

Is advanced Coupling Methods best fitted in Biosensing of Microparticles?

Published on: 17th July, 2017

OCLC Number/Unique Identifier: 7317651486

Microparticles (MPs) are considered important diagnostic biological markers in many diseases with promising predictive value. There are several methods that currently used for the detection of number and characterization of structure and features of MPs. Therefore, the MP detection methods have been remained pretty costly and time consuming. The review is depicted the perspectives to use coupling methods for MP measurement and structure assay. Indeed, there is large body evidence regarding that the combination of atomic force microscopy or coupling nanoparticle tracking analysis (NTA) with microbeads, plasmon resonance method and fluorescence quantum dots could exhibit much more accurate ability to detect both number and structure of MPs when compared with traditional flow cytometry and fluorescent microscopy. Whether several combined methods would be useful for advanced MP detection is not fully clear, while it is extremely promising.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Endothelial Repair and Endothelial Cell-Derived Secretome

Published on: 9th January, 2017

OCLC Number/Unique Identifier: 7317594407

Growing evidence supports the hypothesis that endothelial cell-derived microparticles (MPs) might contribute to the pathogenesis of cardiovascular (CV) disease. Endothelial cell-derived MPs play a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity and metabolic memory phenomenon. There is evidence that the MPs are secreted actively accompanied to other regulatory molecules. All these actively synthetizing and secreting factors include proteins, adhesion and intercellular signal molecules, peptides, lipids, free DNAs, microRNAs, and even microparticles (MPs) are defined as cellular secretome. The proteomic profile of secretome is under tightly control of genetic and epigenetic mechanisms, which may altered a secretion of the proteins involved into MPs’ organization. Finally, this may contribute the modification of MP’s after their secretion and throughout transfer to the target cells. As a result, communicative ability of endothelial cell-derived MPs may sufficiently worse. Subsequently, cross talk between some components of secretome might modulate delivering cargos of MPs and their regenerative and proliferative capabilities via intercellular signaling networks. The aim of the review is to discuss the effect of various components of secretome on MP-dependent effects on endothelium.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?