SPIKE

Intravitreal Ranibizumab/ Lucentis (IVTL) injections in Glaucoma patients-Intraocular Pressure (IOP) elevation and the use of Anterior Chamber Paracentesis (ACP)

Published on: 20th September, 2017

OCLC Number/Unique Identifier: 7317592360

Purpose • To assess the short term effects of intravitreal Lucentis (IVTL) on intraocular pressure in patients with ocular hypertension and glaucoma • To determine rate of anterior chamber paracentesis (ACP) required post-injection according to departmental protocol Methods This was a prospective, observational study carried out between August 2011 and February 2012 in the Department of Ophthalmology, Maidstone Hospital. 24 participants (13 female, 11 male) with established ocular hypertension (OHT) or glaucoma were chosen from a cohort of patients receiving intravitreal (IVTL) Ranibizumab (Lucentis) treatment for wet age related macular degeneration (wARMD). Apraclonidine 1% was given pre-injection, and baseline IOP was measured 30 min. after this, just before IVTL. IOP was measured at baseline, within 1 min of injection, 5 min, 15 min, 30 min up to 60min following a single IVTL treatment. Anterior paracentesis was performed if: • Immediate post injection IOP > 50mm Hg and OHT • Immediate post injection IOP > 40 mm Hg and there was evidence of disc damage only • Immediate post injection IOP > 30mm Hg with evidence of disc damage and visual field loss Results 79.2% had diagnosed disc damage and visual field loss (glaucoma); 12.5% had disc damage only (pre-perimetric glaucoma), whereas the remaining 8.3% had no evidence of disc damage or visual field loss i.e. ocular hypertension (OHT). Administration of Apraclonidine 1% prior to IVTL did not cause a statistically significant IOP reduction in patients with OHT and glaucoma (paired Student’s t-test P = 0.368). Immediately post injection, mean IOP was 41.54mm Hg (SD 14.1, 95% CI 37.20 to 45.88; Paired T test results P <0.0001,) which confirmed a statistically significant difference between baseline and immediate post injection IOP. 13 out of 24 (58%) of the study patients required anterior chamber paracentesis (ACP) post IVTL according to our devised protocol. There was no statistically significant difference in baseline IOP between the paracentesis and non-paracentesis groups (p=0.4). The presence of a bleb post injection had no statistically significant bearing on immediate post intravitreal IOP (p=0.3). ACP performed at 1min restored IOP to a safer level at 5min in all cases thus treated. Conclusions IVTL appears to cause a significant but transient rise in IOP which is reduced after a mean time of 5 minutes. Although the clinical significance of this IOP spike is still unknown, extreme care must be taken in patients with ocular hypertension and glaucoma particularly those with established disc damage and visual field loss. Apraclonidine 1% appears to have a limited role in the prophylactic lowering of IOP pre-injection. The authors propose the use of the formulated anterior chamber paracentesis protocol for IOP management in patients with OHT and glaucoma receiving intravitreal anti-VEGF treatment.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

OPEN and CLOSED state of SPIKE SARS-COV-2: relationship with some integrin binding. A biological molecular approach to better understand the coagulant effect

Published on: 2nd July, 2021

OCLC Number/Unique Identifier: 9272357651

Related the physio-pathological process of COVID-19 disease it is interesting to focus to the aspect. Played by interaction of Sars-Cov-2 protein with integrins of human epithelial pulmonary cell. A bio molecular approach help in to deeply verify the involved factors and the results of this Activation RGD mediated. Of Great interest also the relationship with some vaccine strategy followed by the various pharmaceutical industry. The results of this work will be useful to think modification in some vaccine increasing the global safety and related some rare ADR.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

The SARS CoV-2 spike domain, RGD and integrin binding effect-relationship for vaccine design strategy

Published on: 20th July, 2021

OCLC Number/Unique Identifier: 9244748101

Related the need to search new strategy in vaccine design in order to reduce also some rare effect like trombosys for some registered products it is interesting the role played by the SPIKE RGD domain. The binding with molecules like Fibronectin is a process that must to be deeply investigated. A better understanding in this process can be used to improve safety of the new generation of COVID vaccine. The rare effect like thrombosis recognized by regulatory agency produced a modification of technical data sheet of some vaccine so the phenomena Is interesting to be more investigated. Spike protein and its domains are involved in producing pathological effect of the COVID-19 disease. What it is interesting is that some pathological effect of this pathology are similar to some rare side effect produced by some COVID-19 vaccine classes. After a review of interesting literature related this topics is submitted an experimental projects able to verify in vitro the spike procoaugulant property.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Seasonal change and COVID-19: Will the harmattan season lead to an increase in COVID-19 cases in Nigeria?

Published on: 30th December, 2020

OCLC Number/Unique Identifier: 8796532690

The harmattan season, which is a period characterized by low temperature, dry air and increased air pollution leads to widespread airborne disease and exacerbation of pre-existing conditions, should be recognized as a period of potential risk of high COVID-19 infection rates. This period also coincides with the Christmas season which comes with so many festivities and can become a COVID-19 super-spreader. With many Nigerians now abandoning the non-pharmaceutical protection measures against COVID-19, the harmattan season and the forthcoming spike in social gatherings might usher in the second wave of the virus which can potentially be more catastrophic. There is need for the Nigerian government to start planning and instituting new protection measures and guidelines for safe Christmas celebration while also educating and encouraging the populace to adopt the protection measures recommended by experts.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

SARS-CoV-2 infection and phylogenetic analysis with the risk factors in human body alongside the pulmonary effects and medication

Published on: 6th November, 2020

OCLC Number/Unique Identifier: 8698222103

Related the extremely transmittable abilities of SARS-CoV-2,a harmonious virus to the bat CoV, gets transmitted by three principal processes-- the inhalation of droplets from the SARS-CoV-2 infected person, contacting to the person, and by the surfaces and materials defiled with the virus. Whereupon bat Coronavirus is mostly like the pandemic causing virus SARS-CoV-2, bats are often deliberated and figured out as a possible primary host although no intermediate has not been defined yet in the wherewithal of transmission. The Spike Glycoprotein plays an important role in the case of penetration with the assistance of the ACE2 receptor and the Receptor Binding Domain. In the human body, infiltrating the nucleic acid into host cells, SARS-CoV-2 attacks one cell and one by one into the whole human body; therefore, infected cases are found symptomatic and asymptomatic considering the immune power. Patients with cardiovascular disease or diabetes proceed with their treatment with ACE2 often; therefore, there might be a high chance of getting infected. Whereas the SARS-CoV-2 infects the blood and then lungs, Antigens improvement can be better in order to avoid high-complicated effects. Currently, no vaccination or no accurate cure and treatment has not been defined. An explanation with analysis on SARS-CoV-2 has been performed from the aspect of virology, immunology and molecular biology. Several relevant figures have been included hereby in order to a better understanding of the very concept.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Exploring pathophysiology of COVID-19 infection: Faux espoir and dormant therapeutic options

Published on: 5th May, 2020

OCLC Number/Unique Identifier: 8620512199

COVID-19 virus structural components: The 2019-nCoV, also called SARS-CoV-2, was first reported in Wuhan, China in December 2019. The disease was named Coronavirus Disease 2019 (COVID-19) and the virus responsible for it as the COVID-19 virus, respectively, by WHO. The 2019-nCoV has a round, elliptic or pleomorphic form with a diameter of 60–140 nm. It has single-stranded RNA genome containing 29891 nucleotides, a lipid shell, and spike, envelope, membrane and hemagglutinin-esterase (HE) proteins. Steps in progression of COVID-19 illness: Once inside the airways, the S protein on the viral surface recognizes and mediates the attachment to host ACE-2 receptors and gains access to endoplasmic reticulum. The HE protein facilitates the S protein-mediated cell entry and virus spread through the mucosa, helping the virus to attack the ACE2-bearing cells lining the airways and infecting upper as well as lower respiratory tracts. With the dying cells sloughing down and filling the airways, the virus is carried deeper into the lungs. In addition, the virus is able to infect ACE2-bearing cells in other organs, including the blood vessels, gut and kidneys. With the viral infestation, the activated immune system leads to inflammation, pyrexia and pulmonary edema. The hyperactivated immune response, called cytokine storm in extreme cases, can damage various organs apart from lungs and increases susceptibility to infectious bacteria especially in those suffering from chronic diseases. The current therapeutics for COVID-19: At present, there is no specific antiviral treatment available for the disease. The milder cases may need no treatment. In moderate to severe cases, the clinical management includes infection prevention and control measures, and symptomatic and supportive care, including supplementary oxygen therapy. In the critically ill patients, mechanical ventilation is required for respiratory failure and hemodynamic support is imperative for managing circulatory failure and septic shock. Conclusion: Confusion, despair and hopes: There is no vaccine for preexposure prophylaxis or postexposure management. There are no specific approved drugs for the treatment for the disease. A number of drugs approved for other conditions as well as several investigational drugs are being canned and studied in several clinical trials for their likely role in COVID-19 prophylaxis or treatment. The future seems afflicted with dormant therapeutic options as well as faux Espoir or false hopes. As obvious, not all clinical trials will be successful, but having so many efforts in progress, some may succeed and provide a positive solution. Right now, though, confusion and despair prevail.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Stages in COVID-19 vaccine development: The Nemesis, the Hubris and the Elpis

Published on: 22nd December, 2020

OCLC Number/Unique Identifier: 8870065222

The nemesis: SARS-CoV-2 pandemic: Leaving in its wake millions of infections, accompanied by an immense magnitude of morbidity and multitude of mortality, and an unfathomable economic toll, the COVID-19 pandemic has led to a global calamity. An effective and safe COVID-19 vaccine is urgently needed to prevent the disease, thwart the complications and avert deaths resulting from unrestrained transmission of the infection. The hubris: Vaccine development: While most of the platforms of vaccine candidates have focused on the spike (S) protein and its variants as the primary antigen of COVID-19 infection, various techniques involved include nucleic acid technologies (RNA and DNA), non-replicating viral vectors, peptides, recombinant proteins, live attenuated and inactivated viruses. There are novel vaccine technologies being developed using next-generation strategies for precision and flexibility for antigen manipulation relating to SARS-CoV-2 infection mechanisms. The elpis: Updates and prospects: There were nine different technology platforms under research and development to create an effective vaccine against COVID 19. Although there are no licensed vaccines against COVID-19 yet, there are various potential vaccine candidates under development and advanced clinical trials. Out of them, one having undergone phase III clinical trials, has become available in some countries for use among the high-risk groups following emergency use authorization. Other COVID-19 vaccines may soon follow the suit. Conclusion: Hopes and concerns: The hope of benefiting from the vaccine to the extent that it may be the only way to tide over and control the COVID-19 pandemic, is accompanied by the likely fear of adverse effects and opposition in public for COVID-19 vaccination, including the vaccine hesitancy. Further, there is concern among scientific circles that vaccine may have opposite of the desired effect by causing antibody-dependent disease enhancement.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Exploring COVID-19: Relating the spike protein to infectivity, pathogenicity and Immunogenicity

Published on: 27th January, 2021

OCLC Number/Unique Identifier: 8906007931

Introduction: SARS-CoV-2 life cycle: The disease which reportedly began in Chinese city Wuhan in November-December 2019 manifesting as severe respiratory illness, soon spread to various parts of the world, and was named COVID-19, and declared a pandemic by WHO. The life cycle of SARS-CoV-2 begins with membrane fusion mediated by Spike (S) protein binding to the ACE2 receptors. Following viral entry and release of genome into the host cell cytoplasm there occurs replication and transcription to generate viral structural and non-structural proteins. Finally, VLPs are produced and the mature virions are released from the host cell. Immunogenicity of the spike protein: The S protein is considered the main antigenic component among structural proteins of SARS-CoV-2 and responsible for inducing the host immune response. The neutralising antibodies (nAbs) targeting the S protein are produced and may confer a protective immunity against the viral infection. Further, the role of the S protein in infectivity also makes it an important tool for diagnostic antigen-based testing and vaccine development. The S-specific antibodies, memory B and circulating TFH cells are consistently elicited following SARS-CoV-2 infection, and COVID-19 vaccine shots in clinical trials. The emerging SARS-CoV-2 variants: The early genomic variations in SARS-CoV-2 have gone almost unnoticed having lacked an impact on disease transmission or its clinical course. Some of the recently discovered mutations, however, have impact on transmissibility, infectivity, or immune response. One such mutation is the D614G variant, which has increased in prevalence to currently become the dominant variant world-over. Another, relatively new variant, named VUI-202012/01 or B.1.1.7 has acquired 17 genomic alterations and carries the risk of enhanced infectivity. Further, its potential impact on vaccine efficacy is a worrisome issue. Conclusion: THE UNMET CHALLENGES: COVID-19 as a disease and SARS-CoV-2 as its causative organism, continue to remain an enigma. While we continue to explore the agent factors, disease transmission dynamics, pathogenesis and clinical spectrum of the disease, and therapeutic modalities, the grievous nature of the disease has led to emergency authorizations for COVID-19 vaccines in various countries. Further, the virus may continue to persist and afflict for years to come, as future course of the disease is linked to certain unknown factors like effects of seasonality on virus transmission and unpredictable nature of immune response to the disease.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Bacillus amyloliquefaciens as a plant growth promoting bacteria with the interaction with of grass salt Distichlis palmeri (Vasey) under field conditions, in desert of Sonora, Mexico

Published on: 2nd October, 2018

OCLC Number/Unique Identifier: 7900050235

The halophyte Distichlis palmeri (Vasey) is a plant resource with high potential to be harvested in the coastal areas of northwestern Mexico; enlarge the knowledge and domestication for its incursion into the agricultural sector, plays an important role for arid areas with saline intrusion problems. However, its productivity depends on the supplementary supply of nitrogen, as well as other essential macro and micronutrients. The microorganisms considered beneficial are an alternative to chemical fertilization, highlighting those Plant Growth Promoting Bacteria (PGPB). In the present study, the inoculation of the Bacillus amyloliquefaciens (B.a.) as a halobacterium PGPB was evaluated to know the response in seeds of Distichlis spicatai obtained from natural population from colorado river in Delta north of the Gulf of California. Wild seed was collected and germinated previously inoculated with B. a., and sowed in germinated beds. Later, seedlings were planted under field and salinity conditions in the coast of Hermosillo, Sonora. Three treatments were examined (T1: B.a., T2: Chemical fertilization, T3: Negative control), with four repetitions each treatment. Each repetition consisted of experimental plots of 5 x 5 m, with a separation of 1 m between them. The harvest was carried out 600 days after sowing. The results indicate that treatments inoculated with halobacteria B.a., showed significant results in crude protein, non-protein nitrogen, neutral detergent fiber and acid detergent fiber, as well as spike length and number of seeds. The results obtained suggests the feasibility of biofertilizers where biomass and seed production are significant compared to non-inoculated controls.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

RBD targeted COVID vaccine and full length spike-protein vaccine (mutation and glycosylation role) relationship with procoagulant effect

Published on: 26th April, 2021

OCLC Number/Unique Identifier: 9026719857

Related COVID vaccine production many different strategies was followed by the producers. Observing some rare event of thrombosis after some COVID-19 vaccination, it is interesting to verify if the Target used for the manufacturing can be involved in a different procoagulant activity or not. Some vaccine are suspended in some country or under a deep new verify- investigation by the regulatory agency. (EU or USA). This fact it is relevant. The target SPIKE-PROTEIN FULL LENGTH modified or not or towards the RBD domain can be a relevant factor.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Reasons why new coronavirus, SARS-CoV-2 infections are likely to spread

Published on: 28th April, 2020

OCLC Number/Unique Identifier: 8589558651

The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) originally emerged in China during December 2019 and had become a global pandemic by March 2020. COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Two other coronaviruses have caused world-wide outbreaks in the past two decades, namely SARS-CoV (2002–2003) and Middle East respiratory syndrome coronavirus (MERS-CoV) (2012–present). The surface spike glycoprotein (S), which is critical for virus entry through engaging the host receptor and mediating virus host membrane fusion, is the major antigen of coronaviruses. Recent studies provide molecular insights into antibody recognition of SARS-CoV-2. In this review, we discuss the relationship between the spike glycoprotein of SARS-CoV-2 and its receptor, angiotensin converting enzyme 2 (ACE2) including the latest findings.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Contemplating SARS-CoV-2 infectivity with respect to ABO blood groups

Published on: 26th October, 2021

OCLC Number/Unique Identifier: 9322470952

COVID-19 is a disease that is caused by SARS-CoV-2 and very speedily spreading all over the world. The blood group’s effect on COVID-19 is not clear. The main aim of this article is to determine the relationship between sensitivity of COVID-19 and ABO blood group. For this study we have observed that the individuals with blood group A are at higher risk of getting COVID-19 because they contain the higher concentration of Angiotensin-converting enzyme-2 that provide the site to virus for entry. But in other blood groups the natural Anti A antibodies block the interaction between host receptor and virus and disturb their interaction. Certain studies show that the infectivity and mortality rate in covid patients is not affected by AB blood group system. But according to research, increased ventilator usage, ICU stay was observed in critically ill patients with AB blood group than of other blood groups. O blood group has proved to be protective against SARS-CoV-2 due to the presence of both anti-A and anti-B antibodies as they prevent the binding of the spike protein S of the virus with the ACE2 receptors which are present on the surface of cells. Moreover, furin also plays a major role in penetration of virus in the host cells. Furin is required for the activation of the spike protein S of the virus and due to the low efficiency of furin cleavage in blood group O it is protected from SARS-CoV-2 and other chronic diseases. Mortality rate of covid 19 depends upon the environmental factors, number of people living in the area and also some economic factors. The different strains of COVID-19 effect the different people differently and as the time passes the strain of COVID-19 has changed and thus according to this the mortality rate of different provinces and areas varies due to environmental factors. Pregnant women have no any kind of transportation of covid to their fetuses but mostly patients of blood group A are being affected by COVID-19 and hence their fetuses are somehow effected. And those pregnant women having blood group O does not have any risk of COVID-19 of severe stages.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

ACE2 and TMPRSS2 polymorphisms and the development of COVID-19: a review of the literature

Published on: 28th April, 2022

SARS-CoV-2 is a virus that has a positive-sense, single-stranded RNA genome that encodes 4 structural proteins, the main one being the S protein (Spike) responsible for mediating with ACE2 and TMPRSS2 for entry into the host cell. The study of single nucleotide polymorphisms (SNPs) of ACE2 and TMPRSS2 can elucidate their possible intervention in the action of the protein, its activity, and the gene expression of encoding these enzymes, which may increase susceptibility to viral infection. From this, literature searches were carried out until December 2021, listing 11,820 publications for literary analysis on the described genetic variations of these protein structures, as well as their relation and influence on the pathology. It was possible to conclude that there is a great influence exerted by genetic variability in ACE2 and TMPRSS2 increasing the ability of the virus to bind to the host cell and the development of COVID-19 with complications. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat