congestive heart failure

Left ventricular ejection fraction and contrast induced acute kidney injury in patients undergoing cardiac catheterization: Results of retrospective chart review

Published on: 15th November, 2019

OCLC Number/Unique Identifier: 8330168042

Background: Contrast-induced acute kidney injury (CI-AKI) is an important cause of increasing the hospital stay and in-hospital mortality. By increasing intra-renal vasoconstriction, left ventricular ejection fraction (LVEF) can increase the risk of CI-AKI. We sought to investigate whether LVEF can impact the incidence of CI-AKI after cardiac catheterization and whether it can be used to predict CI-AKI. Methods: Patients underwent cardiac catheterization from December 2017 to February 2018 at Jersey Shore University Medical Center were enrolled in the study. Contrast-induced acute kidney injury (CI-AKI) was defined as an increase in serum creatinine of ≥ 0.5 mg/dL or an increase of ≥ 25% from the pre-procedure value within 72 hours post-procedure. The maximum allowable contrast dose was calculated using the following formula: (5* (weight (kg)/creatinine level (mg/dL)). A multivariable logistic regression analyses, controlling for potential confounders, were used to test associations between LVEF and CI-AKI. Results: 9.6% had post catheterization CI-AKI. A total of 18 out of 44 (44%) of patients who had CI-AKI also had ongoing congestive heart failure. No statistically significant association found neither with maximum allowable contrast (p = 0.009) nor ejection fraction (p = 0.099) with the development of CI-AKI. Conclusion: In spite of the fact that no statistically significant relationship found between the percentage maximum contrast dose and the ejection fraction with the post-procedure CI-AKI, we heighten the essential of employing Maximum Allowable Contrast Dose (MACD) and ejection fraction in patients undergoing PCI to be used as a clinical guide to predict CI-AKI.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Pathological left ventricular hypertrophy and outflow tract obstruction in an infant of a diabetic mother: A case report

Published on: 3rd March, 2020

OCLC Number/Unique Identifier: 8560717043

Background: Infants of diabetic mothers (IDMs) are at increased risk of developing congenital anomalies including cardiac defects. Pathological left ventricular hypertrophy, asymmetrical septal hypertrophy and outflow tract obstruction is a rare but known cardiac comorbidity in infants of diabetic mothers. The severity of this condition in IDMs can vary from an incidental finding on echocardiography to an infant with severe symptoms of congestive heart failure and specific management of the condition varies. Aim: The aim of this article is to report this clinical entity in a Nigerian infant born to a mother with poor glycaemic control in pregnancy and highlight management. Case report: We report a term neonate who was diagnosed as a case of pathological left ventricular hypertrophy, asymmetrical septal hypertrophy and outflow tract obstruction delivered to a mother with gestational diabetics with poor glycaemic control in pregnancy. Child was treated successfully with β-adrenergic blocker and showed resolution of hypertrophy in follow-up echocardiography. Conclusion: Infants of diabetic mothers are very high risk infants. Pathological left ventricular hypertrophy in IDM have good prognosis. Early recognition and prompt intervention is advocated.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Surgical Implantation of Stem Cells in Heart Failure Patients due to Idiophatic Cardiomyopathy

Published on: 25th July, 2017

OCLC Number/Unique Identifier: 7317595690

Introduction: Congestive heart failure is one of the main causes of morbidity and mortality in the XXI century given the promising to date of ABMDSCs and HFDSCs we investigate the safety and efficacy for the implantation of those stem cells for the treatment of idiopathic cardiomyopathy. This is the first pilot clinical study to assess the safety and feasibility of HFDSC in humans. We totally implanted 13 patients: 3 patients were implanted with ABMDSC by Mini-invasive surgical technique in March 2004 in Montevideo, Uruguay, and 10 patients were implanted with HFDSCs by using 2 different surgical techniques: minimally invasive technique (1 patient) and full sternotomy technique (9 patients) between January and February of 2005 in Guayaquil Ecuador. The HFDSCs were obtained from fetuses of 5 to 12 weeks´ gestation from legally consent, no compensated donors who have undergone terminated ectopic pregnancies, elective abortions, or spontaneous miscarriages. At that gestation´s period, totipotent stem cells´ fetus haven´t develop yet the HLA histocompatibility complex, so there´s no possible antigenicity between donor and recipient. Results: Patients with HFDSCs improved in association with increased contractility in these regions. Compared with baseline assessments, we noted other improvements: The mean (±SD) NYHA class decreased from 3.4±0.5 to 1.33±0.5 (P=.001); the mean EF increased 31%, from 26.6% ± 4.0% to 34.8%±7.2% (P=.005); performance in the ETT increased 291.3%, from 4.25 minutes to 16.63 minutes (128.9% in metabolic equivalents, 2.45 to 5.63) (P<.0001); the mean LVEDD decreased 15%, from 6.85±0.6cm to 5.80±0.58cm (P<.001); mean performance in the 6-minute walk test increased 43.2%, from 251±113.1 seconds to 360±0 seconds (P=.01); the mean distance increased 64.4%, from 284.4±144.9m to 468.2±89.8m (P=.004); and the mean result in the Minnesota congestive HF test decreased from 71±27.3 to 6±5.9 (P<.001) The Kaplan-Maier probability of survival at 48 months was 66%. It is not observed rejection, these patients have not developed malignance nodules or cancer at all in the follow-up. In the AMBCSs. The preoperative average NYHA functional class was 3.4; at. 6 months of follow up the average functional class value was 1.3 (p<0,005);. After 6 months all of them remained in functional class I/II. Baseline values of LVEF were 25,28 and 30%.; at 6 months increased to 38, 40 and 46%. (p<0,05). LVESV went from 50mm to 42mm (p<0.05). After 24 months, 2 of the patients still maintained this improvement, while the 3er patient returned to the earlier values after suffering from pneumonia. At 12 years and 5 months 2 patients are alive both received a Resynchronization Therapy; at 8 years and 3 months and 9 years and 1,6 month the actual average EF are 28 and 30 %. The 3er patient died of sudden death at 10 years after the implantation. We can´t demonstrate the cause of this sudden death. Conclusion: Irrespective of the improvement seen in this study, it is still premature to determine accurately the mechanism of action, indications, doses and type of stem cells. Therefore, is imperative and extremely important that more research is needed.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Ocular changes and disorders associated with Obesity

Published on: 27th July, 2018

OCLC Number/Unique Identifier: 7795938194

Obesity is a chronic and metabolic disease with a high increasing prevalence worldwide. It has multifactorial pathogenesis including genetic and behavioral factors [1-5]. Overweight and obesity have been defined and classified by the World Health Organization (WHO) and the National Institutes of Health (NIH) [2,3]. A person with a normal weight has Body Mass Index (BMI) of 18.5-24.9. A person with a BMI under 18.5 is called underweight. An adult having a BMI of 25-29.9 is overweight and pre-obese. Class 1 obesity is defined as a BMI between 30.00-34.99. Class 2 (Severe) Obesity is to have a BMI between 35.00-39.99. Morbid (Extreme, Class 3) obesity is to have a BMI over 40 [1-5]. Obesity is significantly associated with enhanced morbidity and mortality rates. It has also various economic, medical and psychological effects and causes health problems including many systemic diseases, economic costs and burdens, social and occupational stigmatization and discrimination and productivity loss [4-6]. Obesity carries the increased risk of development of many systemic and chronic diseases, including sleep apnea, depression, insulin resistance, Type 2 (adult-onset) diabetes, Gout and related arthritis, degenerative arthritis, hypertension, dyslipidemia, heart disease such as myocardial infarction, congestive heart failure, or coronary artery disease, polycystic ovary syndrome and reproductive disorders, Pickwickian syndrome (obesity, red face and hypoventilation), metabolic syndrome, non-alcoholic fatty liver disease, cholecystitis, cerebrovascular accident, colonic and renal cancer, rectal and prostatic cancer in males, and gallbladder, uterus and breast cancer in females [6-12]. In recent years, some publications reported that obesity has been strongly associated with some ocular diseases including age-related cataract and maculopathy, glaucoma, and diabetic retinopathy [13-16]. The recent reports demonstrated that the central corneal thickness and intraocular pressure were increased while as mean thickness of RNFL and retinal ganglion cell and choroidal thickness (CT) were decreased in the morbidly obese subjects [17-19]. However, another study has reported that CT increased in obese children [20]. On the other hand, a recent study reported that all values of the specific tests used to evaluate the ocular surface were within the normal range [21]. In some experimental studies, it has been demonstrated that obesity may cause retinal degeneration [22,23]. Additionally, in a past meeting presentation, it has been speculated that keratoconus is associated with severe obesity [24]. Teorically, idiopathic intracranial hypertension, and papilledema may also be associated with obesity [25]. Obesity may be also a cause of mechanical eyelid abnormalities such as entropion [26]. However, further investigations are needed to detect the significant relationship between these diseases and obesity. On the other hand, the ocular surgeries of obese patients are difficult compared to normal weight-subjects. The posterior capsule rupture and vitreous loss may easily develop during cataract surgery of these patients because obese patients have an elevated vitreous pressure and operating table cannot often be lowered or surgeon’s chair cannot be elevated sufficiently to provide the clear viewing of the operating area and tissues. So, some different surgical manipulations such as standing phacoemulsification technique and reverse Trendelenburg position have been developed. Additionally, the standing vitrectomy technique has been used for vitreoretinal interventions in morbidly obese patients [27,28]. In conclusion, all obese subjects should be subjected to a completed ophthalmological examination and to relevant clinics for the detection of possible comorbidities and diseases
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Developing a Machine Learning Algorithm for Improved Management of Congestive Heart Failure Patients in the Emergency Department

Published on: 24th October, 2023

Background and aim: Congestive heart failure is a prevalent and serious condition that poses significant challenges in the emergency department setting. Prompt and accurate management of congestive heart failure patients is crucial for improving outcomes and optimizing resource utilization. This study aims to address these challenges by developing a machine learning algorithm and comparing it to a traditional logistic regression model that can assist in the triage, resource allocation, and long-term prognostication of congestive heart failure patients.Methods: In this investigation, we used the MIMIC-III database, a publicly accessible resource containing patient data from ICU settings. Traditional logistic regression, along with the robust XGBoost and random forest algorithms, was harnessed to construct predictive models. These models were built using a range of pretreatment clinical variables. To pinpoint the most pertinent features, we carried out a univariate analysis. Ensuring robust performance and broad applicability, we adopted a nested cross-validation approach. This method enhances the precision and validation of our models by implementing multiple cross-validation iterations.Results: The performance of machine learning algorithms was assessed using the area under the receiver operating characteristic curve (AUC). Notably, the random forest algorithm, despite having lower performance among the machine learning models still demonstrated significantly higher AUC than traditional logistic regression. The AUC for the XGBoost was 0.99, random forest 0.98, while traditional logistic regression was 0.57. The most important pretreatment variables associated with congestive heart failure include total bilirubin, creatine kinase, international normalized ratio (INR), sodium, age, creatinine, potassium, gender, alkaline phosphatase, and platelets.Conclusion: Machine learning techniques utilizing multiple pretreatment clinical variables outperform traditional logistic regression in aiding the triage, resource allocation, and long-term prognostication of congestive heart failure patients in the intensive care unit setting using MIMIC III data.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?