The RNA interference (RNAi) technique is a new modality for cancer therapy, and several candidates are being tested clinically. Nanotheranostics is a rapidly growing field combining disease diagnosis and therapy, which ultimately may add in the development of ‘personalized medicine’.
Technologies on theranostic nanomedicines has been discussed. We designed and developed bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels (HAI-NGs) for targeted X-ray computed tomography (CT) imaging and chemotherapy of MCF-7 human breast tumors. HAI-NGs were obtained with a small size of ca. 90 nm, bright green fluorescence and high serum stability from hyaluronic acid-cystamine-tetrazole and reductively degradable polyiodixanol-methacrylate via nanoprecipitation and a photo-click crosslinking reaction. This chapter presents an over view of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. Finally, we focus on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside.
Introduction
In actual pharmacological therapy we can see that some drugs can be added to other medical instruments to improve their activity: in example we can see medicated stent for some coronary disease, or hormonal medical devices used in pregnancy prevention, but other example are known today. In example Carmustine wafer is delivered by delivery systems in some brain cancer and radioactive seed implants in prostatic cancer. Ocular intra vitreal implants for some macular degenerations (MABS or cortisones) other implants delivery systems drugs, naltrexone implant for opiate dependence. Other strategies imply carrier use to deliver the drugs in the site of action: In example MABS linked to radioactive isotopes in some relapse of severe Hodgkin disease but many other example we can see in therapy used today. So we can think that other chronic conditions can be treated using a combination of drugs with other instrument to improve the clinical outcomes. This to make possible that the ERLICH MUGIC BULLETS can act in the right site reducing the side effect. In example today we can see various medical interventional radiological strategy to treat in coronary and hearth disease with medicate stents positioning or to local use of contrast agents or other valvle surgery procedures with global good clinical results.
In the actual medical therapy of BPH, we can see: antibiotics, alpha blockers, 5-ARI, fitotherapeutics/natural products (Serenoa repens) with different which display clinical activities and other molecules such as FANS (local or systemic dosage forms) cortisones and others. Relationship between immune systems and chronic prostatitis are strictly involved in BPH progression. A vicious cycle that involve chronic flogosis, tissue remodeling, grow factors, inhibition of apoptosis, and other phenomena. Observing BPH pathogenesis under an immunologic point of view make possible to search new pharmacological strategies, to improve actual therapy.
The aim of this work is to observe some relevant literature in our opinion related the management of BHP and its progression under a pharmaceutical and immunological point of view. A deep knowledge in the pharmaceutical properties of some molecules (antimicrobials, anti-phlogosis agents, Anti-androgenic agents, alpha blockers, 5-ARI and other treatments, techniques, interventions or instruments) can help the physicians to pick the right choice.
Ocular disorders encompass a multitude of diseases that are unique in their cause, therapy and degree of severity. Due to distinctive morphology of the eye, efficient ocular drug delivery has proven to be a difficult task. Current treatments of ophthalmological diseases include the usage of both intrusive as well as nonintrusive methods such as injections, eye drops, ointments, gels etc. The current state of the art drug delivery methods are associated with low bioavailability and therefore nanotechnology based drug delivery approached are evolving as for improving the therapeutic index of currently used drugs against variety of ocular disorders. This review highlights the recent developments in nano-formulations for ophthalmic treatment and also offers discussions towards the future prospectus of nano-formulations in the mainstream of ophthalmic diseases.
Burns injuries induce a state of immunodepression that predisposes to a bacterial infectious complication that leads to several comorbid diseases and high mortality rate. Previous studies about anti-inflammatory, antimicrobial and antioxidant properties of Aloe vera (L.) Burm., Calendula officinalis L.and Matricaria recutita L. are acknowledge by antimicrobial effects.
Previous studies about anti-inflammatory, antimicrobial and antioxidant properties of Aloe vera (L.) Burm., Calendula officinalis L. and Matricaria recutita L. are knowledge by antimicrobial effects. Bacterial cellulose membrane (nature BCM) is a potential carrier as a drug delivery system in the wound and burn treatment. The present study aimed to evaluate the antibacterial activity of extracts of A. vera, C. officinalis, and M. recutita incorporated in BCM against bacterial strains commonly present in wound and burns. The agar-dilution susceptibility testing was used to determine the minimum inhibitory concentration (MIC) for S. aureus, E. coli, and P. aeruginosa. The standardized extracts of A. vera, M. recutita, and C. officinalis were, respectively, used at 3.25% of total polysaccharides, 1% of apigenin 7-O-glucoside and 0.084% of total flavonoids expressed in quercetin. The BCM incorporated with A. vera extract was efficient to prevent the growth of P. aeruginosa and S. aureus. BCM loaded with C. officinalis inhibited the growth of S. aureus. The BCM loaded with A. vera and C. officinalis extract showed better antibacterial activities against P. aeruginosa and S. aureus and, consequently, properties to prevent infectious disease in the wound or burn caused by these bacteria.
Antibiotic-resistant bacteria are emerging pathogens whose resistance profiles generate a serious health crisis by holding their impact on human health. Misuse of antibiotics has directed the emergence of microbes immune to presently accessible drugs. Pathogenic bacteria become resistant by employing various mechanisms, such as; antibiotic modification, target site alteration, and biofilm formation, increasing the time they spend in the intracellular environment where antibiotics are unable to succeed at therapeutic levels. Due to this, attempts are being made to develop new alternative nanoantibiotics as a promising approach to treat multidrug resistance disease-causing bacteria. Accordingly, there is considerable contemporary attention to the use of nanoparticles (NPs) as antibacterial agents against different pathogens and as target drug delivery toward specific tissues therefore microbes are eliminated by the biocidal properties of nanoantibiotics. Additionally, the utilization of nanoencapsulation systems can help to beat the issues of, those with toxicity natures, and target drug delivery problems. This review encompasses the antibiotic resistance prevalence, mechanisms, and therefore the use of nanoparticles as antibacterial and drug delivery systems to overcome the antibiotic resistance challenges of bacteria. Overall, this review paper provides a conceptual framework for understanding the complexity of the matter of emergence of antibiotic resistance bacteria even for brand spanking new synthesized antibiotics. Therefore the availability of such knowledge will allow researchers to supply detailed studies about the applications of nanoparticles in the treatment of multidrug-resistant bacteria.
Dentistry is an ever-evolving field that has seen significant advances in recent years. This article sheds light on some of the current and emerging trends in oral health care, including digital dentistry, regenerative medicine, and the use of lasers. For example, digital dentistry involves the use of computer-aided design and manufacturing technology, which enables more accurate and efficient production of dental devices. On the other hand, regenerative medicine and nanoDentistry can be considered promising area that combines the use of stem cells, growth factors, biomaterials, and nanotechnology to regenerate damaged tissue and improve treatment outcomes. Lasers are increasingly being used in dentistry for a range of applications, including the treatment of gum disease and teeth whitening. Other developing technologies such as 3D printing and artificial intelligence are also being increasingly incorporated into dentistry, providing improved treatment options for our patients. Last yet definitely would/will not least, controlled drug delivery systems are being developed to deliver drugs to specific target sites in a localized and sustained manner, reducing the risk of adverse effects. Currently, these emerging trends are transforming the landscape of odontology and beyond. Hence, in this mini-Review, we explore such trends in oro-dental and cranio-maxillo-facial indications to highlight the potential benefits, advancements, and opportunities of applications for improved patient care.
EB Simão-Silva, NFG Serrano, MPC de Medeiros, AJ Boareto-Mendes, JF Galdino and FM Araujo-Moreira*
Published on: 17th April, 2023
In 2005 we reported for the first time on a chemical route aiming to synthesize stable magnetic carbon/graphite. By using the Nuclear Magnetic Resonance (NMR) technique we have verified that its magnetism is an intrinsic property of this synthesized material and not originated from ferromagnetic impurities of any kind. Through direct measurement of the local magnetic field using Carbon-13, we have concluded that its magnetism originated from defects in the structure. From its biocompatibility, we have been working on the use of magnetic carbon/graphite to deliver many compounds aiming to fight different diseases. Despite all the scientific and technological advances of the present day, cancer is a multifactorial and difficult-to-treat disease, killing hundreds of thousands of people a year worldwide. Therefore, the development of a new and efficient drug delivery system to fight cancer – among other diseases - is as important as the discovery of a novel active molecule. In this review of our own work, we show the drug delivery system named MAGUS® (an acronym for Magnetic Graphite Universal System) we have built based on nanostructured magnetic carbon/graphite. This is an innovative and promising system composed of a biocompatible nanostructured particle of magnetic carbon/graphite functionalized with different molecules and materials. MAGUS®, depending on what we link to its structure, is so versatile and can be used to detect a wide range of specimens, from tumors and cancers to chemical and biological agents used as non-conventional weapons. That is why we call it universal. In the present work, MAGUS® will be acting as a biosensor, where the magnetic carbon/graphite is functionalized with radioactive particles of Iodine-131 and antibodies of different types of cancer. Then, by focusing on both the antigen-antibody interaction and the spatial guiding through an external magnetic field we are providing our drug delivery system a double way to detect and reach just the target. Based on these strategies, the functionalized magnetic carbon/graphite will reach only the neoplasm and not the surrounding healthy cells around. In a general view, it means that we are giving specificity to the MAGUS® drug delivery system as a pioneering and effective way to detect and treat cancers. We are also working on this unprecedented and efficient drug delivery system using the principles of Boron Neutron Capture Therapy (BNCT) with Boron-10 instead of Iodine-131. BNCT technique uses neutrons as the external source and is frequently employed to treat specific tumors that are radio resistant or very difficult to kill using conventional radiation therapy. In summary, we show here for the first time that our Magnetic Graphite Universal System associated with nuclear techniques can be successfully used as a biosensor to detect and fight cancers and tumors with powerful features that conventional delivery drug systems and other treatments do not have at all.
Hydrogel-based formulations hold significant promise for treating ocular diseases that impact the posterior segment of the eye. These formulations exhibit the ability to surmount ocular barriers and offer sustained drug release, rendering them efficacious drug delivery systems. This article addresses the challenges linked to treating disorders affecting the posterior eye segment and underscores the imperative for less invasive drug delivery methodologies. We further delve into diverse contemporary ocular dosage forms, encompassing gels, nanostructures, and implants, with a specific emphasis on hydrogels. Hydrogels offer several merits, including precise targeting, sustained release, enhanced bioavailability, and non-invasiveness. Moreover, they curtail the risk of adverse effects and foster patient adherence. An enthralling advancement is the amalgamation of hybrid drug delivery systems, integrating nanoparticles, liposomes, dendrimers, and stimuli-activated nano-systems, with hydrogels for posterior eye ailment treatment. These hybrid nano-systems exhibit promise in enhancing drug stability, prolonging drug release, and pinpointing specific tissues within the posterior segment. We also provide an overview of ongoing clinical trials and approved hydrogel-based drug delivery systems, like Retisert and Ozurdex. These systems have demonstrated efficacy in managing chronic non-infectious uveitis, Age-related Macular Degeneration (AMD), and diabetic macular edema. Nevertheless, challenges persist, including optimizing bioavailability, maintaining drug stability, and implementing personalized treatment approaches. The incessant evolution of gel-based drug delivery systems stands to substantially enhance patients’ quality of life and establish new benchmarks in treating posterior eye diseases. The future of ophthalmology brims with excitement, as gel-based drug delivery systems hold the potential to revolutionize ocular therapies, providing effective remedies for an array of vision-related afflictions.
Mohammad Hossein Karami*, Majid Abdouss* and Mandana Karami
Published on: 28th November, 2023
The survey gives an in-depth examination of medicate assimilation challenges within the genital range and the improvement of vaginal medicate conveyance gadgets to overcome these challenges. It investigates the components involved in medicate discharge within the genital locale and examines commonly utilized vaginal sedate conveyance frameworks such as nanoparticles and hydrogels. The survey centers on the applications of these conveyance frameworks in controlling bacterial vaginal diseases. The plan issues related to vaginal sedate conveyance gadgets are moreover examined, highlighting the significance of considering variables such as mucoadhesion and bodily fluid porousness. The survey portrays different in vitro and ex vivo models utilized for assessing these frameworks, counting organoids and new human cervical bodily fluid. The choice of show depends on the particular objectives and characteristics of the definition. The audit emphasizes the noteworthiness of utilizing these models to pick up important bits of knowledge and make precise forecasts with respect to the execution of medicate conveyance frameworks in vivo. Moreover, grandstands progressed models utilized for other mucosal locales as a potential motivation for future models of the female regenerative framework. Generally, the audit highlights the significance of understanding organic instruments and planning compelling vaginal drug conveyance frameworks to progress sedate conveyance within the genital region. It emphasizes the require for suitable models to evaluate and anticipate the execution of these conveyance frameworks.
Cells have emerged as highly promising vehicles for delivering drugs due to their unique advantages. They have the ability to bypass immune recognition, navigate biological barriers, and reach difficult-to-access tissues through sensing and active movement. Over the past couple of decades, extensive research has been conducted to understand how cell carriers can overcome biological barriers and influence drug effectiveness. This has resulted in the development of engineered cells for targeted drug delivery to specific tissues. Despite the presence of exciting developments, a comprehensive understanding of the challenges and potential strategies is necessary for the effective clinical application of cell-based drug carriers. This review provides an overview of recent progress and novel concepts in cell-based drug carriers, as well as their potential for translation into clinical practice. Additionally, we delve into important factors and emerging strategies for designing the next generation of cell-based delivery technologies, with a particular emphasis on achieving greater accuracy and targeted drug administration.
Great, We are too comfortable with the process including the peer review process and quality. But, the journal should be indexed in different databases such scopus.
Afework Edmealem
I would like to mention that I had a wonderful experience working with HSPI. The whole process right from manuscript submission to peer review till the publication of the article was very prompt & efficient. I wish you good luck for the future.
Amarjeet Gambhir
During the process your positive communication, prompt feedback and professional approach is very highly appreciated.
We would like to thank you very much for your support.
Can Vuran
Your journal has accomplished its intended mission of providing very effective and efficient goals in dealing with submissions, conducting the reviewing process and in publishing accepted manuscripts in a timely manner. Keep up the great work and services that you provide.
University of Jacqmar, Inc., USA
John St. Cyr
Archives of Vascular Medicine is one of the top class journal for vascular medicine with highly interesting topics.
You did a professional and great Job!
Elias Noory
Thank you and your company for effective support of authors which are very much dependable on the funds gambling for science in the different countries of our huge and unpredictable world. We are doing our work and should rely on a teams like Galley Proof-HSPC. Great success to all of you for the 2019th!
Be well all the year long.
Russia
Victor V Apollonov
I am delighted and satisfied with. Heighten Science Publications as my manuscript was thoroughly assessed and published on time without delay. Keep up the good work.
Ido-Ekiti/Afe Babalola University, Nigeria
Dr. Shuaib Kayode Aremu
Great, thank you! It was very efficient working w/ your group. Very thorough reviews (i.e., plagiarism, peer, etc.). Would certainly recommend that future authors consider working w/ your group.
David W Brett
To the editorial team at HSPI and the Journal of Clinical Nephrology:
Thank you so much for your hard work and collaboration in bringing our article to life. Your staff was responsive, flexible, and communicative and made the process smooth and easy. Thank you!
Alejandro Munoz
Thanks you and your colleague for the great help for our publication. You always provide prompt responses and high quality of service. I am so happy to have you working with me.
Thanks again!
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."