environmental impact assessment

Cumulative Effect Assessment: preliminary evaluation for Environmental Impact Assessment procedure and for environmental damage estimation

Published on: 9th October, 2017

OCLC Number/Unique Identifier: 7286424596

The paper presents and develops the issue of Cumulative Effect Assessment (CEA) in the Environmental Impact Assessment (EIA) screening procedure established by the State and Regional regulations In Italy. In the period 2001-15 in the territory of the Venice province (north east Italy, Veneto region) n. 328 projects (and the related environmental preliminary/definitive studies) were applied to competent Authorities (6% to the State, 39% to the Region and 55% to the Province). All the Environmental Impact Studies (EISs) and Environmental Preliminary Studies (EPSs) referring to the this territory officially applied to competent Authorities in the period 2001-2010, have been analysed with focus on the identification and assessment of cumulative effects (CEs); the projects considered and analysed for this purpose comprise a total of n. 181 EIA screening and ordinary procedures; the remaining 147 projects in the period 2011-15 (for a total of 328) are here considered only for statistical reason to an update assessment of project typologies in the same territory. The methodology applied for the analysis of the sample of environmental studies in the period 2001-10 refers to that presented by Cooper and Sheate (2002) with modifications. The investigation has been developed looking for the way in which the topic is performed by practitioners in the environmental studies as from qualitative as well as quantitative point of view. Specific attention has been paid to waste management plants which are always subject to EIA screening procedure since 2008 according to Directive 97/11/EEC and in case to the whole EIA procedure. The approach proposed by Lombardia Region (North Italy; 2010) for EIA screening procedure of waste management plants has been applied to identify CEs and modified according to the characteristics of the considered territory; it allows the performance of the project-based approach and must be completed with a regional-based approach (Dubè, 2003). The proposed approach can be useful in case of waste management and IPPC (Integrated Pollution Prevention and Control, Directive 96/61/EEC, amended with Directives 2008/1/EC and 2010/75/EU) plants to define the financial warranties required for the authorization of operative activity of the plants to cover potential environmental damages produced in cases of accidents and other conditions as required in Europe (art. 14 Directive 2004/35/EC on environmental liability). Several project categories were chosen and their EISs analysed as an exemplificative case according to the potential generation of cumulative impacts and the characteristics of the territory. With reference to the completed procedures where the competent Authority presented a final judgement, it has been observed that the CEA has been seldom developed due to not compulsory legal requirements as already observed by Burris and Canter (1997). Moreover, when it is considered, the methodology is limited and not systemized. Indices of impact have been identified according to emission for the main environmental components focussed with the analysis of the pressure factors of the plants. The study points out the need to analyse and evaluate the cumulative effects (CEs) at a strategic level (within the Strategic Environmental Assessment-SEA- procedure) with a view to preparing the study for EIA/EPS framework procedure for the projects derived from the corresponding plan/program. A sound knowledge of the considered territory and in particular of its pressure sources is of main importance for CEA assessment and impacts’ prevention. Geographic Information Sytesm (GIS) application is strongly needed for pressure sources’ census and control data storing
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Environmental impact assessment of demolition of a building in India-A case study

Published on: 3rd August, 2022

Buildings are demolished, when they outlived their service life, become structurally/functionally unfit, or have been built illegally. In India, an RCC framed, 40-storied high-rise building, with a built-up area of about 75,000 sqm, built without relevant approvals along with lots of violations of building bye-laws, has been demolished. There is nothing new in this demolition process, but its effect on the environment is unavailable. A study has been conducted to understand the environmental impact of this demolition. Based on the main primary construction materials, the embodied energy of this demolished building has been computed as 7.07 GJ/sqm.The civil construction cost of the building was found to be about INR 200 Crores (USD 27 million, assuming a conversion rate of 1 USD 75 INR in the year 2022). Expected GHGs emissions corresponding to this embodied energy were estimated as 42.42 × 103 MT. Energy in the demolition of the building has been computed to be about 8.7 GJ/sqm. The situation, in which this building can be retrofitted and made compliant with local building bye-laws, has been analyzed for its environmental impact. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Environmental Modeling for Radiation Safety

Published on: 28th August, 2023

The newly launched IAEA project MEREIA (MEthods for Radiological and Environmental Impact Assessment; 2021- 2025), MEREIA continues some activities of previous IAEA exercises in the field of radioecological modelling and focuses on areas where the probabilistic approach determines the predictive capability of environmental models. The program offered the opportunity to set up well-designed and verified scenarios to collect and compare exposures predicted by particular models based on this scenario and then perform a validation study of contributing models. It consists of the comparison of model prediction with observed data or in the case where there is a lack of measurement data to perform a comparison within model prognoses.  The previous international works have brought significant improvement in environmental modeling in terms of better understanding and mathematical description of complex physical and chemical phenomena that occur in various environmental media and also have promoted new areas for experimental investigations. The new experimental results yielded updated handbooks of a large number of environmental parameters for less-known elements. Moreover, the principal objective of the activities in environmental modelling was an integrated risk assessment of the reference group of population and biota associated with radionuclides releases from various kinds of nuclear facilities as from different types and power nuclear reactors, radioactive waste disposal and more complex nuclear research facility. This reflects recent international recommendations to extend protection against radiation hazards of humans to wildlife flora and fauna. However, the statistics supported knowledge on some essential environmental parameters still remain small. Therefore, one could be aware of some limitations of the probabilistic approach that required advanced methods of probabilistic prognosis Monte Carlo.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?