Clarireedia jacksonii sp. nov. Formerly Sclerotinia homoeocarpa F.T. Bennett, the causal agent of dollar spot (DS), is the most destructive pathogen in turfgrass. Symptoms appear as circular patches 10-40 mm in diameter with small tan lesions surrounded by a darker band, sometimes presenting an hour glass appearance. A multi-year study was initiated with the objective of determining the efficacy of biological control agents (BCA) and tank mixes of BCA’s and synthetic fungicides on DS control. Nutrient source was also evaluated to determine any interaction with the BCA’s and tank mixes. in vitro studies evaluated the efficacy of synthetic and BCA’s for C. jacksonii control. Quarter strength potato dextrose agar was amended with ¼, ½ and full labeled rates of various products. Chlorothalonil at all rates provided greatest (> 90%) control of C. jacksonii for study duration. Biological control agents provided best efficacy at ¼ and ½ label rates. Streptomyces griseoviridis provided least efficacy and may have exacerbated formation of C. jacksonii. Preventative field evaluations for synthetic and BCA’s provided different results between two study years. In Year 1, all treatments had < 15% disease severity for the duration of the study. In year 2, disease pressure was extremely elevated. Synthetic program 1, centered on azoxystrobin + propiconazole applications and conventional fertility sources, provided best results with < 5% disease severity for the duration of the study. Reduced synthetic program 1, and synthetic program 2 followed closely with < 10% disease severity. Reduced synthetic programs were based on monthly applications of either chlorothalonil or pyraclostrobin every 30 day, alternated with biofungicide applications. Synthetic program 2 utilized rotation applications of pyraclostrobin and chlorothalonil every 14 days. Organic programs, utilizing only biofungicides and organic fertility sources, provided the least amount of control and exceeded the 15% threshold by the second month of the evaluation period.
fusarium graminearum is one of the most popular phytopathogens of cereals worldwide. F. graminearum is the major causal agent of head blight of wheat and barley. Disease-resistant cultivar development, antagonistic microorganism usage and fungicide treatment are the most common strategies in head blight management strategies. However, these methods have some important disadvantages. The use of plant-derived essential oil against F. graminearum seems to be a promising approach due to the recent researches. This review summarizes the potential use of essential oils to fight against F. graminearum.
During the 2018 season, superficial dry and firm black spots, where sometimes an aerial mycelium developed, appeared on the rind of easy peeler mandarins causing high economic losses in fresh citrus exports from Perú. In this work, we have identified the causal agent, a species of Cladosporium not previously reported as a citrus pathogen. The pathogen was isolated from rind lesions of affected fruit and was identified by sequencing as Cladosporium ramotenellum; and fulfilment of Koch postulates was proven. This species was present on the surface of immature fruit in the groves, indicating that the infection is likely initiated before harvest. Cladosporium ramotenellum is resistant to the postharvest fungicides imazalil, pyrimethanil, and thiabendazole, but sensitive to propiconazole, prochloraz, and ortho-phenylphenol. We designed a postharvest industrial treatment to decrease the Cladosporium sp. load on the fruit surface that limited the incidence of infection and reduced the postharvest losses caused by the fungus. Although this species is quite ubiquitous, this is the first description of C. ramotenellum causing decay of citrus fruit, being the symptoms of this disease similar to the ones described previously and caused by Cladosporium cladosporoides in cv. Satsuma mandarins from Japan.
Strobilurin is a group of natural products and their synthetic analogs have been widely used to control and prevent fungal diseases. Strobilurins were firstly isolated in 1977 from the mycelium of Strobilurus tenacellus, a saprobic Basidiomycete fungus causing wood-rotting on forest trees. This group of pesticides was designed to manage fungal pathogens classes such as Ascomycetes, Basidiomycetes, and Oomycetes. Also, Strobilurin commercialized included derivatives such as are azoxystrobin, kresoxim-methyl, picoxystrobin, fluoxastrobin, oryzastrobin, dimoxystrobin, pyraclostrobin and trifloxystrobin. This group is a part of the larger group of QoI inhibitors, which act to inhibit the respiratory chain at the level of Complex III. Strobilurins group control an unusually wide array of fungal diseases, included water molds, downy mildews, powdery mildews, leaf spotting and rusts. This group are used on cereals, field crops, fruits, tree nuts, vegetables, turfgrasses and ornamentals. Also, Strobilurins found to enhance the plant growth in some cases.
The efficacy of chitosan and silicon oxide to prevent postharvest weight loss and fungi infection in 'Valencia Late' oranges was tested. Three silicon oxide concentrations (0.1%, 0.2%, 1%) were applied as preharvest treatments. Chitosan treatments were performed at the same concentrations in postharvest fruit. Preharvest applications were carried out by tractor spraying, while fruit were submerged for 30 seconds in baths with the chitosan concentrations in the postharvest applications. In both cases, a positive control (water treatment) and negative control (fungicide) were included. Treated fruit were stored in a chamber to simulate commercial storage conditions (4 ºC, 90% RH) for 9 weeks. After this time, the weight loss and damage caused by fungi due to natural infection were evaluated. Both silicon oxide and chitosan applications were effective in controlling natural infection by Penicillium species but had no positive effect on weight loss.
Plant-parasitic nematodes (PPNs) are famous aggressive pests that attack several crops worldwide. A lot of farmers are suffering from nematode diseases which cause critical crop losses. At the same time, the most of available solutions for this problem are depending on synthetic nematicides. These chemical nematicides not only cause environmental and health problems but also may cause resistance in nematodes. Despite the occurrence of resistance in nematodes under field conditions still less clear. Therefore, this note is about the registered nematicides in Egypt which may help those who are interested in nematicides. Also, the chemical group and mode of action of nematicides were mentioned according to the insecticide resistance action committee (IRAC) [1] and fungicide resistance action committee (FRAC).
Invasive fungal infections are described as a continuous and severe harm to human health and they are associated with at least 1.5 million deaths worldwide each year. Amphotericin B exerts its activity through hydrophobic interactions with cell membrane ergosterol, cause the rupturing or leakage of cell membrane. The antifungal azole medicine group is classified as imidazoles (clotrimazole, ketoconazole, miconazole) and triazoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole) that are named according to the number of nitrogen atoms in the azole ring. Flucytosine is a first-line treatment for the management of cryptococcal meningitis. The most routine adverse effects of fluconazole involve accelerated liver enzymes, gastrointestinal complaints, headache, and skin rash. If antacids, PPIs, H2 blockers administered together with ketoconazole medicines; they will reduce the blood levels of ketoconazole by increasing gastric pH because ketoconazole requires an acidic media for dissolution and systematic absorption. Griseofulvin ruptures mitotic spindle during metaphase by interacting with fungal microtubules-(-), fungal mitosis (metaphase arrest), adequate to block expansion of fungi (drug is static), preventing them from damaging.
Rice bakanae disease is a typical seed-borne disease caused by Fusarium fujikuroi that occurs in seedling beds and in fields. Fungicide seed treatment is an effective solution to this disease. In this study, we used a triple-fungicide suspension identified as 11% FMA, which is composed of 1.1% fludioxonil, 3.3% metalaxyl-M and 6.6% azoxystrobin to coat rice seeds for the prevention of bakanae disease. 11% FMA is water-logging resistant for rice seed treatment. Results showed that the mycelial growth of F. fujikuroi was significantly inhibited by 11% FMA in the laboratory test. Seed dressing with FMA at the rate of 1, 2, and 4 g per kg of seeds promoted seed germination and growth of seedling roots. Treatment with 11% FMA under all dose rates prevented rice bakanae disease of seedlings by more than 90%, especially by more than 95% at 4, 6 and 8 g per kg of seeds. During the subsequent maturation period, rice bakanae control efficiency reaches above 95% as well at 6 or 8 g per kg of seeds, slightly larger than about 92% at 1 or 2 g per kg of seeds. Above all, the rice yield notably improved by 11% with 1 g/kg, by around 8% with 2, 4, or 8 g/kg and by 5% with 6 g/kg treatment.
Ali Anwar*, Mohammad Najeeb Mughal, Efath Shahnaz, Sabiya Bashir, Qadrul Nisa, Fazil Fayaz Wani and Asha Nabi
Published on: 4th July, 2023
Over half of the world's population is fed by rice. It is consumed as a staple food by many countries worldwide. It is affected by a number of diseases among which fungal diseases contribute to its significant loss. Kashmir Valley located in the North Western Himalayan region of India is known for various coarse varieties of rice for their taste and elite class. However, the diseases cause a serious problem for the local farmers as well as the people who also consume rice as their staple food. One of the best remedies for disease management is the adoption of integrated disease management strategies, which include the use of resistant varieties, cultural practices, and judicious use of fungicides. In this review, we present the major fungal diseases affecting rice in Kashmir Valley and their management using Integrated Plant Disease Management (IDM).
Gray mold disease, caused by the fungus Botrytis cinerea, causes heavy losses in strawberries. The use of chemical fungicides due to the dangers for humans and the environment has caused attention to reduce their consumption and use biological methods. In this research, the effects of zinc oxide, copper, and silver nanoparticles have been synthesized from an aqueous extract of cloves, and the probiotic bacteria Lactobacillus casei by the green method was investigated on the gray mold disease of strawberries. The results showed that concentrations of 10% of zinc oxide nanoparticles synthesized from aqueous extract of cloves can completely control this pathogen on the culture medium and the fruit. Zinc and silver nanoparticles produced by Lactobacillus casei prevented 93.7% and 81% of fungal growth in the culture medium, respectively. Other treatments did not show a good inhibitory effect on the fungus. All treatments were able to prevent 100% to 50% of fungal growth after 96 hours on strawberries. The investigation of the storage characteristics showed the positive effect of the examined nanoparticles on reducing the rate of change of the physicochemical characteristics of the strawberry fruit tissue. Apparent decay was significantly reduced and samples treated with nanoparticles scored higher in sensory evaluation compared to control. Also, investigating the toxicity of nanoparticles in this experiment on the HepG2 cell line showed that Compared to the control, copper and zinc nanoparticles did not have significant toxicity on cells, but silver nanoparticles led to 25% cell death. This research provides promising results in the field of using nanoparticles for pre-harvest and post-harvest control of plant diseases.
Sunflower (Helianthus annuus L.) is one of the most important vegetable oil sources in the world and in our country. The preference for sunflower oil in the consumption of vegetable oil increases the importance of sunflowers in our country. Rust, downy mildew, Verticillium wilt, Sclerotinia stalk and head rot, charcoal rot, blight, and leaf spot are some of the important diseases most commonly seen in sunflowers. In some years, depending on the climatic conditions, Downy mildew (Plasmopara halstedii) is widely observed and it causes an epidemic in sunflower-planted areas in the Adana province. Genetically resistant hybrids have started to be grown in Turkey in recent years due to the resistance of downy mildew disease to fungicides. The aim of the study was to determine the status of sunflower diseases and Downy Mildew disease in Adana.
Elif Tan*, Ebru Gezgincioğlu and Özlem Gülmez and Özlem Barış
Published on: 22nd September, 2023
This study aimed to determine whether the essential oils of thyme, ginger, and mint from medicinal aromatic plants can provide resistance to the pathogen Fusarium oxysporum in the maize plant. To this end, the antifungal effect of 0.1 ml, 0.25 ml, 0.5 ml, and 1 ml essential oil amounts was determined by the agar disc diffusion method. It was determined that concentrations containing 0.1, and 0.25 ml essential oil showed no antifungal effects, however, concentrations containing 0.5 and 1 ml essential oil had antifungal effects. The most effective concentration was found to be 1 ml of essential oil in all three species. The maize was grown under hydroponic conditions. Thyme, ginger, and mint essential oils (1 g/100 ml) were applied to the root medium of the grown maize plant on the 8th day. An F. oxysporum suspension containing 107 spores was applied after 24 hours and harvested 3 days later. When the reactive oxygen species (H2O2) and MDA amounts of the harvested plants were examined, it was observed that there was an increase in the population of F. oxysporum. However, applications of thyme, ginger, and mint essential oil have been observed to significantly reduce these. It was also determined that essential oils protected the plant against F. oxysporum by increasing antioxidant enzyme activities. Although these three essential oils applied have antifungal properties, it has been observed that the best effect belongs to thyme essential oil. The results show that essential oils of thyme ginger and mint can be used as potential fungicides against the pathogen F. oxysporum in maize cultivation
Biofungicides are prepared based on living micro/organisms or on matters prepared from them. They are based on the antagonism of fungal pathogens and their antagonists. Their effect depends on weather conditions (temperature and moisture) in comparison with chemical fungicides which are effective in all conditions but they let the residues in plants, animals, and men. The future of agriculture will be pure food without chemicals.
The services of the journal were excellent. The most important thing for an author is the speed of the peer review which was really fast here. They returned in a few days and immediately replied all of my questions. I want to refer this platform to all scholars.
Many thanks.
Eastern Mediterranean University, Cyprus
Zehra Guchan TOPCU
Congratulations for the excellence of your journal and high quality of its publications.
Angel MARTIN CASTELLANOS
I am to express my view that Heighten Science Publications are reliable quick even after peer review process. I hope and wish the publications will go a long way in disseminating science to many interested in scientific research.
College of Fisheries, CAU(I), Tripura, India
Ajit Kumar Roy
Your journal has accomplished its intended mission of providing very effective and efficient goals in dealing with submissions, conducting the reviewing process and in publishing accepted manuscripts in a timely manner. Keep up the great work and services that you provide.
University of Jacqmar, Inc., USA
John St. Cyr
I do appreciate for your service including submission, analysis, review, editorial and publishing process. I believe these esteemed journal enlighten the science with its high-quality personel.
Bora Uysal
Your services are very good
Chukwuka Ireju Onyinye
I, Muhammad Sarwar Khan, am serving as Editor on Archives of Biotechnology and Biomedicine (ABB). I submitted an editorial titled, 'Edible vaccines to combat Infectious Bursal Disease of poultry' for publication in ABB. After submitting the manuscript; the services rendered by the management and technical personnel to handle and process the manuscript were marvelous. Plagiarism report was shared with me with complements before reviewers' comments, All steps including article processing and service charges were well taken care of keeping in view the author's interest/preference. All together, it was an encouraging and wonderful experience working with ABB personnel.
University of Agriculture, Pakistan
Muhammad Sarwar Khan
We appreciate the fact that you decided to give us full waiver for the applicable charges and approve the final version. You did an excellent job preparing the PDF version. Of course we will consider your magazine for our future submissions and we will pay the applicable fees then.
Anna Dionysopoulou
Your service is excellent. Processing and editing were very fast. I hope to publish more of my works in your journal.
Ausraful Islam
Thank you very much for accepting our manuscript in your journal “International Journal of Clinical Virology”. We are very thankful to the esteemed team for timely response and quick review process. The editorial team of International Journal of Clinical Virology is too cooperative and well-mannered during the publication process. We are hopeful to publish many quality papers in your journal and I suggest the International Journal of Clinical Virology to all of my colleagues, researchers and friends to publish their research here.
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."