neurodegenerative disorders

Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease, and Parkinson’s Diseases, through the Mitigation of Reactive Oxygen Species

Published on: 4th November, 2019

OCLC Number/Unique Identifier: 8302209826

The biological changes caused by oxidative stress (OS) are known to be involved in the etiology of neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. The brain is particularly vulnerable to OS due to its high lipid content and extensive consumption of oxygen. OS processes, particularly the excessive production of reactive oxygen species (ROS), play a critical role in how neurodegenerative disorders develop. This is evidenced by in vivo studies investigating various biomolecules related to OS, such as products of lipid and DNA oxidation. Accordingly, ROS can also cause oxidative-related damage in neurodegenerative disorders, including dopamine auto-oxidation, mitochondrial dysfunction, glial cell activation, α-synuclein aggregation, excessive free iron, and changes in calcium signaling. Furthermore, excessive levels of cellular oxidants reduce antioxidant defenses, which in turn propagate the cycle of OS. As such, it is increasingly important to determine the linkage between a high intake of antioxidants through dietary interventions and a lower risk of developing neurodegenerative diseases. Indeed, in addition to modulating the immune system, optimal nutritional status is capable of changing various processes of neuroinflammation known to be involved in the pathogenesis of neurodegeneration. Accordingly, a better understanding of the role ROS plays in the etiology of neurodegeneration is needed, along with the identification of dietary interventions that may lead to improved therapeutic strategies for both the treatment and prevention of neurodegenerative disorders. Therefore, this review presents a comprehensive summary of the role of ROS in the pathogenesis of neurodegenerative disorders. In addition, nutrients believed to be useful for mitigating and counteracting ROS are discussed. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Navigating Neurodegenerative Disorders: A Comprehensive Review of Current and Emerging Therapies for Neurodegenerative Disorders

Published on: 4th April, 2024

Neurodegenerative disorders (NDDs) pose a significant global health challenge, impacting millions with a gradual decline in neurons and cognitive abilities. Presently, available NDD therapies focus on symptom management rather than altering the disease trajectory. This underscores the critical necessity for groundbreaking treatments capable of addressing the root causes of neurodegeneration, offering both neuroprotection and neuro-restoration. This in-depth review delves into the forefront of emerging NDD therapies, encompassing gene therapy, stem cell therapy, immunotherapy, and neurotrophic factors. It sheds light on their potential advantages, hurdles, and recent advancements gleaned from both preclinical and clinical studies. Additionally, the document outlines existing NDD treatments, spanning pharmacological and non-pharmacological interventions, along with their inherent limitations. The overarching conclusion emphasizes the immense potential of emerging therapies in NDD treatment, yet underscores the imperative for continued research and optimization to ensure their safety, efficacy, and specificity.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?