quinazolinone derivatives

Fabrication of novel Co3O4@GO/La2O3 nanocomposites as efficient, innovative and recyclable nanocatalysts for the synthesis of quinazolinone derivatives under solvent-free conditions

Published on: 2nd September, 2022

For the first time, this research has developed an efficient and novel approach to high to excellent yields for synthesizing Quinazolinone derivatives. Also, the synthesis of Quinazolinone derivatives has been carried out in the presence of Co3O4@GO/La2O3 nanocomposite as a novel heterogeneous catalyst and a green under solvent-free conditions and in a short time and excellent yields for the first time. Various structural and morphological characteristics of the nanocatalyst were employed for the catalyst characterization, such as FT-IR, XRD, FE-SEM, EDX and VSM analyses. All characterization data were checked with each other so that the structure of the nanocatalyst was exactly characterized. The reactions were carried out in the presence of a low amount of nanocatalyst at 100 °C under solvent-free conditions for a short period of time. The proposed nanocomposite exhibits excellent catalytic activity. One of the most important advantages of this method is easy magnetic nanocatalyst separation, green condition, excellent recoverability and easy workup.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?