The halophyte Distichlis palmeri (Vasey) is a plant resource with high potential to be harvested in the coastal areas of northwestern Mexico; enlarge the knowledge and domestication for its incursion into the agricultural sector, plays an important role for arid areas with saline intrusion problems. However, its productivity depends on the supplementary supply of nitrogen, as well as other essential macro and micronutrients. The microorganisms considered beneficial are an alternative to chemical fertilization, highlighting those Plant Growth Promoting Bacteria (PGPB). In the present study, the inoculation of the Bacillus amyloliquefaciens (B.a.) as a halobacterium PGPB was evaluated to know the response in seeds of Distichlis spicatai obtained from natural population from colorado river in Delta north of the Gulf of California. Wild seed was collected and germinated previously inoculated with B. a., and sowed in germinated beds. Later, seedlings were planted under field and salinity conditions in the coast of Hermosillo, Sonora. Three treatments were examined (T1: B.a., T2: Chemical fertilization, T3: Negative control), with four repetitions each treatment. Each repetition consisted of experimental plots of 5 x 5 m, with a separation of 1 m between them. The harvest was carried out 600 days after sowing. The results indicate that treatments inoculated with halobacteria B.a., showed significant results in crude protein, non-protein nitrogen, neutral detergent fiber and acid detergent fiber, as well as spike length and number of seeds. The results obtained suggests the feasibility of biofertilizers where biomass and seed production are significant compared to non-inoculated controls.
Many agriculturally important properties such as heterosis, inbreeding depression, phenotypic plasticity, and resistance for biotic and abiotic stresses are thought to be affected with epigenetic components. New discoveries related with epigenetics are likely to have a major impact on strategies for crop improvement in rice breeding. However, assessing the contribution of epigenetics to heritable variation in plant species still poses major challenges. Methylation of cytosine in DNA is one of the most important epigenetic mechanisms in plants. DNA methylation not only plays significant roles in the regulation of gene activity, but also it is related with genomic integrity. Although most of next generation sequencing (NGS) technologies do not require the use of target specific primer pairs to identify and study DNA cytosine methylation, validation studies of NGS uses selective primer pairs. Bisulfite sequencing technique is a gold method for DNA cytosine methylation studies. However, bisulfite sequencing requires the development of bisulfite primer pairs to selectively study DNA sequences of interest. In this study 9 bisulfite specific primer pairs were identified and validated. These primer pairs successfully amplified bisulfite converted and unconverted genomic DNA extracted from radicle and plumule of rice (Oryza sativa L.) seedlings. Results of the present study clearly revealed the occurrence of CG, CHG and CHH (H stands for C. T or A nucleotides) contents in studied DNA sequence targets were different indicating potential role of DNA cytosine methylation in these genes. Primer pairs reported in this study could be used to detect DNA methylation which is one of the most important epigenetic mechanisms affecting the development, differentiation or the response to biotic and abiotic stress in rice (Oryza sativa L.).
The age-old battle between plants and viruses has many twists and turns. Plants acquired the RNAi factors to checkmate the viruses and the viruses encode VSRs to defeat RNAi for their own survival. Plants designed mechanisms to neutralize the toxic effects of VSRs and the viruses, in their turn, use host microRNAs to strengthen their infection processes. The infightings between these two entities will take different shapes with prolonged evolution and accordingly the researchers will dig these novel forms of duels not only to throw lights in the involved mechanisms but also to manipulate various antiviral strategies. Some of the research courses that might come up in the immediate future are discussed.
Ilex paraguariensis, also known as ‘Yerba mate’, occurs naturally in Argentina, Brazil and Paraguay and is also grown in these countries with different intensities. Leaves and branches of this plant are used in the preparation of a stimulant beverage that beside social importance has notorious health impact. However, the cultivated herbs present low productivity, due to deficiencies in cultivation and harvesting techniques, as well as due to the abiotic stresses that this species is subject to. The discovery and characterization of cold response mechanisms in plants such as Arabidopsis thaliana, began research in order to unravel the physiological and molecular mechanisms in response to cold in other plant species. In this work, we studied the physiological response observed in Ilex paraguariensis plants submitted to low temperatures (0°C), with or without a pre-moderate acclimatization treatment period of (8°C).
Our results suggest the existence of an acclimation response in Ilex paraguariensis, similar to that described in other species of the same temperature.
The use of novel PGPR as bio inoculant is an alternative sustainable agricultural practice to improve soil health, grain quality, increase crop productivity, and conserve biodiversity. The aim of this study is to isolate, and characterized PGP bacteria colonizing tef rhizosphere during the seedling stage. For this concern, 426 samples of tef (Eragrostis tef) rhizosphere soils and roots were collected from East Shewa zone, Oromia regional state. 200 morphologically different bacterial pure colonies were isolated and screened for their PGP traits and biocontrol properties. Among these 40.5% isolates were positive for phosphate solubilization. 36% were positive for IAA production, 4.5% were positive for ammonia production, 19 % were positive for (EXPS), 15.5% were positive for protease production, 12.5% were positive for HCN productions, 9.5 % were positive for cellulase production, 4% were positive for amylase production, 3.5% were positive for chitinase production. For abiotic stress tolerance test, all of the isolates were grown well at 20oc and 30oc and neutral pH, 27% isolates were grown well at 4oc, 25.5% grew at 40oc, 25.5% were grown well on pH-9 and pH-11, 23.5% were tolerated pH-5, 3.5% grew at 50oc and 60oc, 13.5% were grown well on 5% NaCl (w/v), 3.5% were grown well on 10 and 15% NaCl (w/v), which indicated these isolates can survive in some extreme conditions. Totally 15 bacterial species having PGP traits, biocontrol properties, and abiotic stress tolerance ability were identified using the Biolog bacterial identification system. Among these, the majority of the identified PGPR have utilized carbohydrate, carboxylic acid, and amino acid, which are the main components of plant root exudates. The above results indicated that thus PGPR can be used as biofertilizers as well as biocontrol agents to replace agrochemicals to improve crop productivity. Hence, these species can be further formulated and used for greenhouse and field applications.
Tropical forests have long been of interest to biologists because of their high species diversity and their complicated patterns of community organization. The recent ecological studies which have demonstrated that tropical trees are diverse in their reproductive biology and dynamic population structure. Asynchronous flowering among the clones in a clonal seed orchard is an inherent problem resulting in poor seed and fruit set in them. These results in the complete defeat of the prime objective of establishment of clonal seed orchards (CSOs) i.e. abundant quality seed production poor flowering and asynchronous flowering between the clones are a major bottleneck in higher seed set in these clonal seed orchards across the country. Asynchrony found between clones may be attributed to the origin of clones, which are collected from different zonal populations as revealed by isoenzyme and DNA markers studies. This article reviews the work done in CSOs across the world and suggests an alternate strategy in designing the clonal seed orchards of the future.
Although laurel wilt disease was first reported in the United States in 2002 from redbay trees (Persea borbonia) around Savannah, Georgia it has rapidly spread throughout the southeastern coastal plain including Georgia and Florida. In the current study, transects were used to assess the spread and impact of the disease on two native bay trees redbay (P. borbonia) and swampbay (P. palustris) from north Florida in a semi-naturalized ecological preserve. Although tree size and mortality rates have been reported previously, this study provides the first size-based static life tables for both species. While a significantly higher percent (76%) of swampbay trees exhibited signs of laurel wilt disease compared to redbay trees (62%); redbay had more of its canopy damaged by the disease (41% vs. 32% for redbay vs. swampbay respectively); this resulted in a significantly smaller stem diameter for P. borbonia compared to swampbay, both species are experiencing significant declines due to the disease. Both species exhibited a Type III survivorship curve in which the vast majority of individuals were in the smallest size class (average stem diameter was only 2.5 and 3.6 cm for redbay and swampbay respectively). Although traditionally, population age (or size) structure that is heavily biased toward younger or smaller size classes suggests that the population is likely to expand in the future, for these bay trees high mortality rate due to beetle/fungal infestation of larger size classes is responsible for this trend; the smallest size classes are largely free from beetle infestation and laurel wilt disease because the stem diameter is likely insufficient to support beetle development. Results from this study suggest that swampbay is also highly susceptible to laurel wilt disease and its populations are likely to exhibit a similar (albeit slower) decline in Florida’s wetland and mesic ecosystems.
Peaches, Prunus persica were planted as grafted saplings in an avocado orchard previously infested with Armillaria mellea (Vahl) P.Kumm. Trees were planted in large or small holes with or without fresh yardwaste chips added as an amendment and with or without a Trichoderma biocontrol product sprayed into the hole. Trees were monitored for six years -- growth and mortality was tabulated. Six years later 40% of the trees had died from the disease. Trees planted in a large hole were more likely to survive than in a smaller hole (P=0.07) and trees in large holes with fresh organic matter added were the most likely to survive (P=0.04). Trichoderma sprays in the planting hole did not increase survival rates. While growth was initially retarded by adding fresh yardwaste to the hole, in later years none of the treatments affected growth rates.
The circadian clock is an endogenous molecular oscillator with a period of about 24 hours, which regulates the physiology and developmental processes of almost all higher plants. Pseudo-response regulators (PRRs) are an important part of the central clock oscillator, together with other clock genes, constituting interlinked transcriptional feedback loops, which partly influence plant growth and development. In this study, a circadian clock-related gene MsPRR7 was cloned from Medicago sativa (alfalfa) by homologous cloning. The full length MsPRR7 gene was 2648 bp in length, with an open reading frame of 2385 bp encoding a protein of 795amino acids. Phylogenetic analysis showed that the MsPRR7 was closely related to PRR7 from the PRR family of Arabidopsis thaliana. Subcellular localization analysis found that MsPRR7 was located in the nucleus. Quantitative reverse-transcription polymerase chain reactions (qRT-PCR) demonstrated that expression of MsPRR7 gene transcripts in leaves was affected by circadian rhythms, and that its expression level increased with an extension of illumination time, reaching a peak around 8–10 hours. These results will provide the experimental basis for further study of the regulation of PRR family genes in alfalfa.
Pumpkins (Cucurbita pepo) are grown all around the world for a variety of reasons ranging from agricultural purposes to commercial and ornamental sales. The pathogens causing the rot of pumpkin in the world include fungi, bacteria, and viruses. The study was aim to identify fungal pathogens of pumpkin rot during storage, as well as control measures of the diseases using wood ash, mango leaf and rice chaff. Three hundred and sixty-six (366) fruits of pumpkins were studied in Pela, Gaya and Kulinyi districts of Hong Local Government Area of Adamawa State. The diseased samples (fruits) were randomly purchased. Of all the districts visited, Kulinyi has the highest percentage of disease samples (43.82%) while the least is Gaya district with 21.35%. Potato Dextrose Agar (PDA) was used for the isolation of pathogens and these gave Fusarium solani, Aspergillus niger, Aspergillus flavus, and Phytophthora capsici. All the fungal isolates exhibited different degree of pathogenic effect on the pumpkin fruits. The pathogens are susceptible to treatment both In-vitro and In-vivo control trials with wood ash and mango leaf at p ≤ 0.05. Inhibition improved with increased in concentration of the wood ash and mango leaf. Rice chaff treatment equally proved worthwhile with significant inhibition compared to the control at p ≤ 0.05.
Standardized method of seed treatment is of prime importance in the production of groundnut. The study was to carry out control trial using bark extract (aqueous and ethanol) and oil (seed) of mahogany (Khaya senegalensis) on seven (7) isolated fungi from two groundnut varieties (peruvian and valencia). The result shows that both mahogany bark and seed extracts are capable of inhibiting mycelial growth of all the isolates. There was no significant variation between the aqueous and ethanol bark extracts in-vitro, however the in-vivo test shows a significant difference between the aqueous and the ethanol bark extract in which the ethanol extract reduced growth of the pathogens more than the aqueous. For all the pathogens except Rhizopus stolonifer there was no growth between 50% to 100% concentration of the Khaya senegalensis oil in-vitro, however in-vivo control at 50% produced scanty to moderate growth for all the pathogens except Rhizopus stolonifer on peruvian, while there was full coverage on the seeds of valencia variety with Aspergillus niger and Rhizopus stolonifer having total coverage though Pseudaiiescheria boydii and Cylindrocarpon lichenicola were effectively inhibited and showed no growth at the 50% and 100%. Further research to focus on the quantifying the chemical constituents and formulation are suggested.
Abamectin and emamectin are members of avermectin family which categorized as very effective but in the same time are toxic naturally. Most of products in this family are utilized as pharmaceuticals in both humans & animals and for crop protection. Despite avermectins are having complex chemical structures, but they are produced via synthesis in large scales for commercial use. Plant parasitic nematodes (PPNs) cause severe damages in all parts of their host plants, in addition to yield losses. The available strategies to control PPN include use of insecticides/nematicides but these have proved detrimental to environment and human health. Therefore, this scenario gave an opportunity for the utilization of avermectins (abamectin and emamectin) to control plant parasitic nematodes because of their chemical and biological properties, as well as relative safety. Avermectins have short half-lives and their residues can be eliminated easily through different food processing methods. Both abamectin and emamectin were very effective nematicides which proved capability of reducing PPNs significantly in various crops.
Cowpea plants naturally infected with cowpea mosaic comovirus (CPMV) showed different mosaic, mottle, dwarfing, and vain clearing symptoms. Diseased plants were ollected from certain locations of Alexandria and El-Beheira governorates during the growing seasons from 2011 to 2012. CPMV was detected in infected sap at 8 to 24 days after inoculation by DBIA, indirect ELISA and tissue blot immunoassay (TBIA). Chlorotic local lesions were observed on Chenopodium amaranticolor in infectivity test. By using indirect ELISA and DBIA, CPMV were detected in infected plant sap of serial dilutions up to 1: 400. The incidence of CPMV in 21 day old cowpea seedlings grown from infected seeds was determined by ELISA and positive detection of virus antigen reached 65%. Nitrocellulose membrane and canson paper could be used as solid carriers in TBIA and DBIA for detection of CPMV in infected plant tissues. Results revealed that both faces of nitrocellulose membrane and canson paper could be used as solid carriers in TBIA for detection of CPMV in infected plant tissues. According to reverse transcription polymerase chain reaction (RT-PCR) assay of CPMV infected plant; the amplified product was approximately 800bp of partial coat protein gene. The nucleotide sequences accession number were LN606585 and LN606586. The phylogenetic tree was generated using sequences of CPMV isolates with the other CPMV records from GenBank.
The use of enzyme linked immunosorbent assay (ELISA) for the detection of plant viruses is well documented. It proved to be a very valuable detection tools for the plant viruses. The efficiency of the ELISA technique was for practical purpose independent of the ratio of antibodies to antigen. This avoids the necessity of making specific enzyme conjugates for each antigen to be tested and eliminates the extreme specificity, thus allowing for quantitative evaluation of strain relationships. The advantages of indirect ELISA are sample. It needs only to be macerated and added to the plate. The crude antiserum could be used, although it should be cross absorbed before to prevent spurious host reaction. Single commercially available second antibody conjugate is utilized, thus eliminating the problems of preparing and storing many different conjugated antisera. Blotting technique has become widely used for specific identification of nucleic acid and proteins. This dot assay was modified to detect protein by spotting the antigen on a nitrocellulose membrane and incubating the membrane in test antibody followed by incubation in peroxidase-conjugated second antibody to the first antibody, and by development in 4-chloro-1-naphthol. The above procedure termed dot blot immunobinding assay (DBIA). The technique of tissue blotting on nitrocellulose membrane was described for detection of plant viruses in infected plants. Tissue blots were made by pressing with a firm and gentile force, the freshly cut tissue surface on nitrocellulose membranes. The possibility of using both sides of the nitrocellulose membrane (NCM) by tissue blot immuno assay (TBIA) for the detection plant viruses. In an effort to reduce the cost of virus assays, different types of regular paper were evaluated as possible replacements for the commonly used nitrocellulose membrane (NCM) as the solid phase in the tissue-blot immunoassay (TBIA) were used. Comparisons between different serological methods were demonstrated by many investigators Dot immunobinding was eight times more sensitive for detection of PVX and four times more sensitive for detection of PVS and PVY than DAS-ELISA.
Physicochemical and pharmacological studies indicated that Filicium decipiens seeds contained various specialized metabolites, including saponins. The aim of this work is to reveal the nephrotoxicity of FDS, a saponin isolated from Filicium decipiens seeds on male Wistar rats histopathological and biochemical parameters. Rats were submitted to oral ingestion of FDS (6.0 mg/kg) and crude extract (120.0 mg/kg) and were observed high levels of urea and creatinine in blood analyses of all animals followed by an acute renal failure by glomerular retraction. In the present study, FDS and crude extract when administered in Wistar rats induced an increase of serum levels of Urea and Creatinine, biochemical markers of kidney function. Table 1 shows Urea concentration at Test group with FDS (54.3 ± 1.80 mg/ml) and Test group with crude extract (49.7 ± 2.00 mg/ml), were 47% and 34.7% higher, respectively, when compared to control group (36.9 ± 2.00 mg/ml), and Creatinine at the test group with FDS (2.1 ± 0.03 mg/ml) and test group with crude extract (1.6 ± 0.09 mg/ml) presented a value 3.5 and 2.8 times higher, respectively, than control (0.6 ± 0.08 mg/ml). Based on these results, our data demonstrate a significant effect in renal function of rats treated with F. decipiens saponin.
The nematicidal efficacy of abamectin, boron, chitosan, hydrogen peroxide, Bacillus thuringiensis and oxamyl 24% SL against citrus nematode, Tylenchulus semipenetrans were examined on Valencia orange trees under field condition for two successive seasons (2017 and 2018). The experiment was conducted in a Valencia orange orchard infested with citrus nematode at Nubaria, El-Behera governorate, Egypt. The obtained results showed that all the tested treatments reduced nematode final population ((Pf) and reproduction factor (Rf) compared with that obtained from the untreated trees. The highest percentages of Pf reductions (74.5-83.4 %) and (70%-82%) were recorded with oxamyl, boron, abamectin, chitosan and H2O2 in the 1st and the 2nd tested seasons, respectively. Whereas, B. thuringiensis had the least nematode Pf reduction with 60.7 and 55.8% in the 1st and 2nd seasons, respectively. Additionally, all treatments significantly improved orange yield (30.9-83.2% increase), physical fruit parameters and orange juice properties. The highest orange yield increase (83.2%) was recorded with boron treatment followed by oxamyl (70.3%). Also, boron increased total soluble solids (TSS) by 13.6%, volume of orange juice (36.4%) and vitamin C (19.7%) and decreased juice acidity (A) by (16.7%). It is concluded that abamectin, boron and the other tested compounds have potential as non-chemical control strategy tools in managing the citrus nematode. These bioagents reduced the amount of traditional chemical nematicides and are considered to be environmentally safe.
The potential of spent compost of oyster mushroom, Pleurotus sajor-caju cultivated on rice (MCR) or wheat straws (MCW) was evaluated against the root-knot nematode, Meloidogyne incognita on tomato plants under field conditions during two successive seasons (2016 and 2017). The field trial was carried out in a clay loam soil naturally infested with M. incognita at a private farm, Kafr El-Sheikh governorate, Egypt. Results revealed that all the tested treatments greatly suppressed final populations (Pf), numbers of galls and egg masses of M. incognita during both seasons as compared to the untreated treatment. The highest percentages of Pf reductions (81.1 - 87%) and (80.2 - 86.2%) were achieved with the chemical nematicide, Vydate® 10 G and treatments of (MCR and MCW) at application rate of 1200 g/m2 in the 1st and 2nd seasons, respectively. Moreover, the fruit yield during both seasons was increased significantly with all the applied treatments, especially treatment of MCW at application rate of 1200 g/m2. Additionally, chemical fruit properties were markedly improved with MCR and MCW treatments. Also, treatments of MCR and MCW achieved the highest percentages of nitrogen and phosphorus contents. Generally, the results indicated that spent compost obtained after cultivation of P. sajor-caju has a nematicidal potential against M. incognita, also improved nutritional status and increased tomato yield.
Clarireedia jacksonii sp. nov. Formerly Sclerotinia homoeocarpa F.T. Bennett, the causal agent of dollar spot (DS), is the most destructive pathogen in turfgrass. Symptoms appear as circular patches 10-40 mm in diameter with small tan lesions surrounded by a darker band, sometimes presenting an hour glass appearance. A multi-year study was initiated with the objective of determining the efficacy of biological control agents (BCA) and tank mixes of BCA’s and synthetic fungicides on DS control. Nutrient source was also evaluated to determine any interaction with the BCA’s and tank mixes. in vitro studies evaluated the efficacy of synthetic and BCA’s for C. jacksonii control. Quarter strength potato dextrose agar was amended with ¼, ½ and full labeled rates of various products. Chlorothalonil at all rates provided greatest (> 90%) control of C. jacksonii for study duration. Biological control agents provided best efficacy at ¼ and ½ label rates. Streptomyces griseoviridis provided least efficacy and may have exacerbated formation of C. jacksonii. Preventative field evaluations for synthetic and BCA’s provided different results between two study years. In Year 1, all treatments had < 15% disease severity for the duration of the study. In year 2, disease pressure was extremely elevated. Synthetic program 1, centered on azoxystrobin + propiconazole applications and conventional fertility sources, provided best results with < 5% disease severity for the duration of the study. Reduced synthetic program 1, and synthetic program 2 followed closely with < 10% disease severity. Reduced synthetic programs were based on monthly applications of either chlorothalonil or pyraclostrobin every 30 day, alternated with biofungicide applications. Synthetic program 2 utilized rotation applications of pyraclostrobin and chlorothalonil every 14 days. Organic programs, utilizing only biofungicides and organic fertility sources, provided the least amount of control and exceeded the 15% threshold by the second month of the evaluation period.
The study analyzed the factors influencing participation of farm households’ in watermelon production in the study areas. Three local government areas out of Sokoto state were purposively selected. Questionnaire was used to collect data. Multistage of sampling techniques were used to arrive at the sample size of 181 farm households’ for the study. Likert scale is used to analyze the level of participation of farm households’, frequency and inferential statistics were used to analyze the data. The findings revealed that (55.8%) of the farm households are within the ages of 25-30 years, majority (96.7%) are male It shows that majority (64.0%) of the farm households participated in watermelon production as a result of higher income generated. Multiple regression analysis result revealed significant relationships between farm household’s participation in watermelon production and their socio-economic characteristics at p < 0.05. The constraints faced by the farm households are storage technology and improved agricultural inputs. Most (63.5%) of the farm households believed that provision of subsidized agricultural inputs and market accessibility are forms of assistance that will encourages farm households to partake in watermelon production. It is recommended that government and donor agencies should encourage farm households’ by providing them with the modern agricultural inputs so as to influence them to participate fully into watermelon production irrespective of their Socio-economic differences.
Present paper communicates 42 species of angiosperms depicting characteristics of pollen grains as shape, color, exine ornamentations, and type of apertures. Pollen morphological characters are very important in plant identifications in field. Pollen surface features plays significant role in taxonomy and detection of crud drugs. Firsthand information is gathered from field and provided in this research article.
I am very much pleased with the fast track publication by your reputed journal's editorial team. It is really helpful for researchers like me from developing nations.
I strongly recommend your journ...
Badri Kumar Gupta
The service from the journal staff has been excellent.
Andy Smith
I very much appreciate the humanitarian services provided in my stead by this journal/publisher.
It exhibits total absence of editorial impertinence. As an Author, I have been guided to have a fruitf...
Chrysanthus Chukwuma
I hope to ability to make some new investigation and publish in Your Company in future.
Artur Stopyra
Publishing an article is a long process, but working with your publication department made things go smoothly, even though the process took exactly 5 months from the time of submitting the article til...
Anas Diab
In my opinion, you provide a very fast and practical service.
Ahmet Eroglu
We really appreciate and thanks the full waiver you provide for our article. We happy to publish our paper in your journal. Thank you very much for your good support and services.
Ali Abusafia
Your services are very good
Chukwuka Ireju Onyinye
Journal of Pulmonary and Respiratory Research is good journal for respiratory research purposes. It takes 2-3 weeks maximum for review of the manuscript to get published and any corrections to be made...
Divya Khanduja
I do appreciate for your service including submission, analysis, review, editorial and publishing process. I believe these esteemed journal enlighten the science with its high-quality personel.
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."