Articles

Research of possibilities of studying the areas of development of erosion of slope lands in Azerbaijan and fight it

Published on: 15th July, 2019

OCLC Number/Unique Identifier: 8200144240

The study proved that in gully systems with the largest catchment area ranging from 5.0 to 28.8 km2, the degree of dismemberment of gully systems is small, varies mainly from 1 to 3 km / km2, less often from 3 to 5 km / km2. As can be seen, the average annual growth of ravines is 0.34 ... 7.48 m in length, 0.20 ... 2.48 m in width, 0.10 ... 1.16 m in depth. The intensity of erosion development (ravine, planar, etc.) is mediated by their catchment area. Moreover, the degree of division of individual gully systems here is not dependent on their catchment area, moreover, the greatest dissection is observed in gully systems that have the smallest catchment area, which is associated with the conditions of their location.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Investigation and analysis of fracture failure and fatigue cracking in High-rise pavement using simulation software of ABAQUS

Published on: 27th May, 2019

OCLC Number/Unique Identifier: 8165128181

Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A qualitative method for determining the surfaces between asphalt layers using ABAQUS software

Published on: 25th April, 2019

OCLC Number/Unique Identifier: 8163588596

The analytical models are mainly combined with numerical equations for the problems of the pavement under the wheel load. Different assumptions can be considered, such as elastic asphalt and viscoelastic as well as static or dynamic load. Mainly on deformation at the bottom of asphalt and tension layers focus on subgrid. The pavement structure was considered as layers with uniform characteristics. Therefore, this analytical model calculates the three-dimensional contact tension between the wheel and the pavement and the shape of the contact area. Basis and subgrid are considered linear and the asphalt layers can be linear or viscoelastic. This model is based on the results of direct shear stress tests at an axial load constant. The curves obtained from this experiment can be defined by three parameters: the maximum shear stress (shear stress curve versus shear displacement), the interaction modulus between the layers (the same curve slope) and the friction coefficient after the failure. Due to the ability of ABACOUS software, this project is done with this software. One of the methods widely used to predict viscoelastic responses of asphalt mixtures is the finite element method. ABAQUS software is one of the tools that can simulate mixed asphalt behavior based on a finite element method, taking into account all the determinant parameters. The use of the Prony series is one of the common techniques for describing the viscoelastic behavior of asphalt mixtures in ABAQUS software. For this purpose, it is necessary to determine the parameters required for this field, including proven constants, moment elastic modulus, and asphalt mixture poison ratio. On the other hand, the determination of these parameters through testing in addition to spending time and costs requires laboratory equipment. Therefore, in this thesis, a three-dimensional finite element model with ABAQUS software was constructed to analyze the persistent pavement using theoretical relations without conducting the experiment. Also, viscoelastic behavior of common asphalt mixtures and time dependence of its responses at different temperatures can be modeled in ABAQUS software. After performing the shear stress test for different axial loads, different temperatures, with or without a single coil, they found that all parameters are temperature dependent and the coefficient of friction does not depend on the applied axial load. This new model improves the accuracy of the finite element model and its important role can be an analytic expression that includes all the variables that are effective in the problem.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Study the effect of transient vibration on multi-storey building structure according to equivalent spring-mass system performed by Ansys

Published on: 16th April, 2019

OCLC Number/Unique Identifier: 8165322564

The carried work has based on transient vibration response of multiple degrees of freedom (MDOF) system. By this work study of Time–history analysis and prediction of the displacement for excitation has done. For the MDOF system, we have taken the four-storey building to done transient vibration. We establish the equivalent spring-mass system. Transient analysis has done for both Undamped and Damped of the forced system of multiple degrees of freedom (MDOF) system. In the case of the Damped system, we have done three stages of damping, i.e., (1) Underdamped system, (2) Critically damped system, (3) Overdamped system. The time-history graph obtained for two different time stages i.e. 0.001 sec & 0.01 sec with initial time 0.000001 sec. The natural frequency has determined by both theoretical calculation and ANSYS. The whole study of transient vibration makes it possible to predict the damping values that oppose any kind of sudden impact or force vibration, such as blasts, earthquakes and tsunamis. The ANSYS is the modelling and simulation software is used to perform the transient vibration response. The Mode Superposition method is used by ANSYS to calculate the structure response
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Damu-Safen pesticide exposure risk assessment, EC (fomesafen, 250 g/l)

Published on: 11th January, 2019

OCLC Number/Unique Identifier: 7991657387

Annually the list of pesticides is replenished by new ones. One of the main criteria for their registration is toxicological and hygienic assessment and its impact on the environment. In order to register the new soy herbicide Damu - Safen, EC (fomesafen, 250 g/l) it was necessary to assess its toxicological and hygienic impact on the environment and humans. Therefore, for the first time we conducted studies of the environmental objects under the influence of Damu-Safen, EC (fomesafen, 250 g/l) and the risk assessment of the active substance fomesafen and pesticide Damu - Safen, EC on the workers. According to the results of the assessment of working conditions for the workers of the tanker and the tractor operator, an acceptable risk was obtained that meets regulatory and hygienic requirements. Residual amounts of fomesafen not exceeding the normative levels were found during conducted studies on environmental objects. Consequently, the results of the risk assessment in the application of pesticide Damu-Safen, EC (fomesafen, 250 g/l) and its impact on the working people and environmental objects indicate the possibility of its application in compliance with optimal environmental conditions and compliance with regulations for appliances and personal protective equipment.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Effect of cement solidification on strength and leaching properties of Heavy Metals Contaminated Soil

Published on: 13th August, 2018

OCLC Number/Unique Identifier: 7844539292

This study investigated the effect of Portland cement on stabilization of heavy metal contaminated clayey soils that may give range of geo environemntal benefits. The absolute concentration of heavy metals: Lead (Pb), Zinc (Zn), Chromium (Cr), Cadmium (Cd) and Copper (Cu) were measured using an inductively coupled plasma atomic emission spectroscopy (ICP-AES). A series of laboratory scale experiments such as unconfined compression test (UCT), pH test and synthetic precipitation leaching procedure (SPLP) were performed to study the effects of curing time and cement content on the unconfined compressive strength (UCS) and leaching characteristics of heavy metals. According to results, excessive concentration of heavy metals are present in the topsoil of Shanghai Jiao Tong University (SJTU) among which Pb, Zn and Cd were most prominent. Other test results showed that the dry density of both C4 and C8 soil samples increases with curing time. Similarly the compressive strength (qu)of C4 and C8 samples at 21 d of curing increases by 40% (113 kPa-288 kPa) and 15% (745kPa-864 kPa) respectively, as compared to the 7 d of curing. Besides, the test results showed a prominent decrease in the leached concentration of heavy metals with increasing curing time.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Use of Geosynthetic materials in solid waste landfill design: A review of geosynthetic related stability issues

Published on: 22nd June, 2018

OCLC Number/Unique Identifier: 7795967156

Geosynthetics used in landfills provides a technical and economic advantages over traditional clay liners. It may create stability issue and even lead to landfill failure due to its low interface or internal shear strength if improperly designed and/or constructed. The most common failure mechanism in geosynthetic-lined landfills is transitional failure involving waste and bottom liner (deep-seated failure) or only final cover system (shallow failure). Shear strengths of geosynthetic-geosynthetic and geosynthetic-soil have a wide range of variations. Shear strengths of interface from literature may be used in preliminary design. For final design, site-specific interface shear strengths shall be used. Internal shear strengths of unreinforced geosynthetic clay liner (GCL) are less than those of reinforced GCLs. Unreinforced GCLs are not recommended for slopes steeper than 1:10 (1 Vertical and 10 Horizontal). Peak shear strength of interface and internal GCLs can be used in bottom liner; residual shear strength of interface and internal GCLs shall be used for geosynthetic placed along the slopes. Site-specific shear strengths of waste are recommended to be used in the design. Landfill failure could be triggered by static loadings including excessive leachate, pore pressure above the bottom liners, gas pressure, and excessive wetness of the geomembrane-GCL, and earthquake loading. The factor of safety of 1.5 is recommended for static loading and 1.0 for earthquake loading. A higher factor of safety is recommended if a failure could have a catastrophic effect on human health or the environment, and if large uncertainty exists in input parameters to calculate the factors of safety. The main objective of this review article is to provide a comprehensive knowledge of slope failure mechanisms, causes, and probable remedies in one place.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Automatic control and protection of Coal Conveyor System using PIC

Published on: 4th May, 2018

OCLC Number/Unique Identifier: 7666307302

The Coal conveyor system forms an integral part in Thermal Power plant owing to the fact that the overall efficiency of the plant is dependent on the rate at which the coal is carried to the crusher unit. But, as of now, only manual labors are employed to regularly monitor the operation of conveyor system which is highly risky. Hence, by means of a Microcontroller like PIC makes the controlling process much easier. The flaws that occur in the conveyor system are mostly due to the temperature at which the coal is carried and also due to the attrition in the belt. By means of a Temperature sensor and an IR sensor this could be regularly monitored and during any abnormal situation, this initiate Cooling fan in case of high temperature and signals an alarm whenever there is any fault in the system.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Cumulative Effect Assessment: preliminary evaluation for Environmental Impact Assessment procedure and for environmental damage estimation

Published on: 9th October, 2017

OCLC Number/Unique Identifier: 7286424596

The paper presents and develops the issue of Cumulative Effect Assessment (CEA) in the Environmental Impact Assessment (EIA) screening procedure established by the State and Regional regulations In Italy. In the period 2001-15 in the territory of the Venice province (north east Italy, Veneto region) n. 328 projects (and the related environmental preliminary/definitive studies) were applied to competent Authorities (6% to the State, 39% to the Region and 55% to the Province). All the Environmental Impact Studies (EISs) and Environmental Preliminary Studies (EPSs) referring to the this territory officially applied to competent Authorities in the period 2001-2010, have been analysed with focus on the identification and assessment of cumulative effects (CEs); the projects considered and analysed for this purpose comprise a total of n. 181 EIA screening and ordinary procedures; the remaining 147 projects in the period 2011-15 (for a total of 328) are here considered only for statistical reason to an update assessment of project typologies in the same territory. The methodology applied for the analysis of the sample of environmental studies in the period 2001-10 refers to that presented by Cooper and Sheate (2002) with modifications. The investigation has been developed looking for the way in which the topic is performed by practitioners in the environmental studies as from qualitative as well as quantitative point of view. Specific attention has been paid to waste management plants which are always subject to EIA screening procedure since 2008 according to Directive 97/11/EEC and in case to the whole EIA procedure. The approach proposed by Lombardia Region (North Italy; 2010) for EIA screening procedure of waste management plants has been applied to identify CEs and modified according to the characteristics of the considered territory; it allows the performance of the project-based approach and must be completed with a regional-based approach (Dubè, 2003). The proposed approach can be useful in case of waste management and IPPC (Integrated Pollution Prevention and Control, Directive 96/61/EEC, amended with Directives 2008/1/EC and 2010/75/EU) plants to define the financial warranties required for the authorization of operative activity of the plants to cover potential environmental damages produced in cases of accidents and other conditions as required in Europe (art. 14 Directive 2004/35/EC on environmental liability). Several project categories were chosen and their EISs analysed as an exemplificative case according to the potential generation of cumulative impacts and the characteristics of the territory. With reference to the completed procedures where the competent Authority presented a final judgement, it has been observed that the CEA has been seldom developed due to not compulsory legal requirements as already observed by Burris and Canter (1997). Moreover, when it is considered, the methodology is limited and not systemized. Indices of impact have been identified according to emission for the main environmental components focussed with the analysis of the pressure factors of the plants. The study points out the need to analyse and evaluate the cumulative effects (CEs) at a strategic level (within the Strategic Environmental Assessment-SEA- procedure) with a view to preparing the study for EIA/EPS framework procedure for the projects derived from the corresponding plan/program. A sound knowledge of the considered territory and in particular of its pressure sources is of main importance for CEA assessment and impacts’ prevention. Geographic Information Sytesm (GIS) application is strongly needed for pressure sources’ census and control data storing
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Rapid Microbial Growth in Reusable Drinking Water Bottles

Published on: 6th October, 2017

OCLC Number/Unique Identifier: 7286427113

Bacteria has been known to grow in pipes of water distribution systems and bottled drinking water. Its growth in reusable drinking water bottles is not clear even though they have become more popular and used by children and adults daily everywhere. This study found that there is an extremely high level of bacteria content and a rapid microbial growth in reusable drinking water bottles. The bacteria content tested by heterotrophic plate count (HPC) is in a range of 0-2.4x105 CFU/mL with an average of about 34,000 bacteria counts/ml for bottles used by children and 75,000 bacteria counts/ml for bottles used by adults. Bacteria number can quickly increases to 1-2 million counts/ml in the bottles one day later. Considering the high level of HPC bacteria content in the reusable drinking water bottles, it may be necessary to have some control measures to reduce the bacteria level and to minimize the associated likely health risk of the disease spreading since many people use reusable water bottles every day. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."