Capsicum spp. is one of the most important economical horticulture crops due to its high consumption either by fresh vegetable or dried spice. Molecular genetic markers offer a number of applications in the genetic improvement of crop plants, which plays an important role in the areas of plant classification and breeding programs. The polygenetic characters of rare species, which are difficult to analyze by traditional methods can, be analyzed easily and classified by using molecular markers. In our study, genetic relationships of twenty-two paprika species were examined to estimate their genetic variations/similarities and to detect the polymorphism present within and among the paprika species by using RAPD-PCR markers. The results revealed that the maximum similarities among the 16 ICBD lines were 100%. The ICBD 03 had 76% similarity compared with other ICBD lines. The CC01 had comparatively low similarity with ICBD forms (30%), followed by EC01 (28%), EC02 (33%), CC02 (35%), and Kt.Pl-19 (60%). The similarity between EC01 and EC02 were 54%. Kt.Pl-19 showed different similarities compared to CC01 (41%), CC02, EC01 (38%), EC02 (29%) and ICBD 03 (40%). The different combinations were tried to optimize the RAPD-PCR profile, which helped to assessing the polymorphism/similarities within and among the Paprika germoplasms were studied.
In order to provide theoretical foundation for forestation of Phyllostachys bambusoides f. shouzhu Yi, the site factors, and the morphological character and biomass of standard bamboo were investigated in 16 sample spots of bamboo forest in Liangping county, Chongqing City, and then the effects of site factors on the clonal growth was discussed. Three site factors as the slope position, altitude, species diversity, had significant effects on the clonal growth of the bamboo. The effects of the gradient, slope aspect, humus thickness, and soil thickness were little, but that of slope aspects was not significant. The altitude of above 800 m, the upper slope, the steep slope and slope, and the thin soil were not suitable for its clonal growth. The results showed that (1) the main site factors affecting the growth of P. bambusoides f. shouzhu were slope position, soil thickness and humus thickness; (2) The forestation site of P. bambusoides f. shouzhu should be selected at the flat ground and the gentle slope of the hills below altitude of 800 m, and the slope position of the forestation site should be selected at the mid and lower position of a hill; (3) Soil thickness and humus thickness should be kept at a suitable level; (4) The diversity of plant species in the bamboo forest should be kept at a suitable level for keeping its growth environment.
Nanoparticles affects growth and development of Plant. Zinc is an important micronutrient that regulates various physiological responses in plant. Application of nanoparticles for modulating plants physiological response is a recent practice. Zinc nanoparticles has been widely used in industry for several decades. However, no significant work had been made on its potential use in agriculture. Understanding physiological effect of Zn NP on rice seed germination could suggest the basis for its prospective application in agriculture to improve plant growth. In the present experiment effect of Zn NP was studied in Kmj-6-1-1 which is a commonly growing rice cultivar of Karimganj district of Assam, India. An exposure to Zn NP (0 mg/L, 5mg/L,10mg/L, 15mg/L, 20mg/L & 50mg/L) caused significant changes in radicle and plumule length , mass ( fresh & dry mass) and seed moisture content in rice. Antioxidant enzymes like guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD) and gluthathione reductase (GR) also increased due to ZnNP treatment. This suggest that Zn NP may significantly alters antioxidant metabolism during rice seed germination. In conclusion, Zn NP protected rice plants from ROS damage by improving levels of antioxidant enzyme activities during germination. As a consequence the Zn NP treated seeds, showed better potential for germination. Further, genomic analysis of germinating rice seeds are needed to elucidate the molecular mechanisms by which Zn NP modulates germination process in rice.
Hepatitis B virus (HBV) is one of the world’s major infectious diseases with 350 million people who are chronic carriers of HBV [1]. Significant minorities go on to develop liver cirrhosis or hepatocellular carcinoma and over 1 million die annually from HBV-diseased liver. Janahi E. at faculty of science, Bahrain University, Bahrain has submitted the following information [2], on HBV-genome organization as part of his Ph.D. degree (2007) in Imperial College, England. HBV genomic organization has 4 Open Reading Frames (ORFs) i.e. Pre-S/S Gene, Pre-C/C ORF, P ORF and X ORF. Regulatory Elements has 4 promoters (pre S2, pre S1, C promoters and X promoters), Pregenomic RNA, Enhancers (Enh 1 and Enh 2) where they are involved in cccDNA formation, Glococorticoid-Responsive Element which is located in X ORF and P ORF overlapping, Polyadenylation Signal (Direct Repeat 1 (DR1) and Direct Repeat 2 (DR2)), Epsilon-Stem Loop and Post-Transcriptional Regulatory Element. HBV genotype D is prevalent in our Middle East area. The HBV genome is a partially relaxed-circular dsDNA molecule consisting of a full length strand (minus strand) with a single unique nick and a complementary (positive strand) of variable length. HBV is considered as a para-retrovirus because its replication involves the reverse transcription of an intermediate-RNA function, of pre-genomic RNA (pgRNA). Replication of HBV genome starts with the encapsidation of the pgRNA and encodes HBV polymerase into an immature nucleocapsid formed by the viral core antigen.
Yoko Oshima-Franco*, Fernanda Dias da Silva, Natália Tribuiani, Isadora Caruso Fontana Oliveira, Regina Yuri Hashimoto Miura, Rafael S Floriano, Márcio Galdino dos Santos and Sandro Rostelato-Ferreira
Vochysia haenkeana extract (Vh-E) was assessed against the neuromuscular blockade induced by Bothrops jararaca venom on chick biventer cervicis (BC) preparation. Pre- and post-venom incubation treatments (Pre-vit and Post-vit) were analysed here. Contractures ACh (110 µM) and KCl (20 mM) were evoked before and after addition of venom without stimulation. Vh-E (600 µg/mL) under Pre-vit was more efficient to neutralize the neuromuscular blockade by venom (40 µg/mL) [72.5±4.6% (venom) vs. 45.2±14% (Vh-E) of blockade, p<0.05, n=4]. Vh-E (600 µg/mL) did not cause significant changes under Post-vit [72.5±4.6% (venom) vs. 63.4±8.2% (Vh-E) of blockade, n=4]. The Pre-vit inhibited the blockade of the contracture to ACh (106±17% of response; n=4) while the Post-vit was able to attenuate the effect of the venom on this contracture (55±5% of response; n=4); related to those contractures to KCl both of treatments with Vh-E attenuated the blocker effect of the venom (62.5±7.7% and 55±5% of response for Pre-vit and Post-vit, respectively; n=4). In conclusion, Vh-E neutralizes partially the neuromuscular blockade in Pre-vit, an effect that can be related to preserved function of “extrinsic” post-synaptic receptors, by measured contractures in response to ACh. The myotoxicity of the venom was significantly reduced by Vh-E in both, Pre-vit and Post-vit, by measured contractures in response to KCl.
Agrobacterium rhizogenes ATCC 15834 wild type strain was transformed with the binary vector pBI121 using the heat shock method. The transformed Agrobacterium was then tested for virulence through tobacco leaf explant transformation. Compared to the non-transformed Agrobacterium, the transformed Agrobacterium showed reduced virulence, producing significantly lower number of hairy roots in tobacco leaf explants. Although the transformed Agrobacterium showed reduced virulence, it was able to transfer the T-DNA of the binary vector into the plant genome, resulting in stable GUS expression in the generated hairy roots. This indicated that in addition to the transfer DNA (T-DNA) from its root inducing (Ri) plasmid, the transformed Agrobacterium is also capable of transferring the binary vector T-DNA and allowing the integration of a foreign gene. Results also showed that hairy root generation efficiency of the transformed Agrobacterium varied with the concentration of the selection agent (kanamycin). Hairy root generation efficiency (hairy roots·explant-1) progressively increased with decreasing concentrations of kanamycin; and the efficiency was highest in the absence of kanamycin. Generated hairy roots showed very strong to tiny GUS expression even those that grew under the highest concentration of the kanamycin (50 mg·L-1). This indicated that co-transformation and efficient transgene expression does not always occur.
Soil dwelling bacteria able to colonize plant roots and closely associated soil are referred to as rhizobacteria. A wide range of rhizobacteria has the ability to promote plant growth directly by producing phytohormone and nutrients; and indirectly by controlling plant pathogen. These beneficial bacteria are known as plant growth promoting rhizobacteria (PGPR). PGPR control phytopathogens by producing chemicals that could damage pathogen cells, removing pathogen specific nutrients from the environment, or inducing resistance against pathogen in plant body. Antagonistic bacteria specifically damage pathogens by producing lytic enzymes, antibiotics and bacteriocins; and excluding pathogen from plant environment by siderophores oriented iron chelation. This review highlights the antagonistic feature of PGPR. Application of antagonistic bacteria as biopesticides is an attractive alternate of chemical pesticides. Chemical pesticides are non-targeted and cause pollution during its synthesis as well as at the site of application. Antagonistic bacteria could be used as biopesticides and biofertilizers for better plant health and growth improvement.
The present study was aimed to screen and quantify the phytochemicals by qualitative and quantitative analysis in methanol and aqueous leaf and stem extracts of Marsilea quadrifolia(L.). In qualitative analysis, the phytochemical compounds such as tannins, saponins, flavonoids, steroids, terpenoids, triterpenoids, alkaloids, carbohydrates, proteins, anthroquinones, phenolic compounds and phytosterol were screened. Among these phytocompounds tannins, saponins, flavonoids, steroids, alkaloids, carbohydrates, proteins and phenolic compounds were observed in methanol and aqueous leaf and stem extracts of M. quadrifolia. Anthroquinones were absent in both leaf and stem extracts of M. quadrifolia. The content of phenolic compounds 8.34±0.92 mg/g and 7.31±0.46 mg/g, flavonoids 7.46±0.64 mg/g and 6.45±0.68 mg/g, alkaloids 6.12±0.51 mg/g and 5.89±0.61 mg/g, tannins 6.58±0.72 mg/g and 6.07±0.56 mg/g and saponins 5.32±0.48 mg/g and 6.30±0.58 mg/g were determined in leaf and stem of M. quadrifolia, respectively. So, the present study confirmed that the presence of phytocompounds in leaf and stem of M. quadrifolia.
In this study we proposed carbonic anhydrase (CA) as an important element of basal resistance during the potato (Solanum tuberosum L.)-Phytophthora infestans interaction. We found a different β-CA expression pattern in incompatible vs. compatible systems correlated in time with CA enzyme activity. Resistant potato leaves supplied with dorzolamide (an inhibitor of carbonate CA activity) and challenged with the pathogen showed an elevated nitric oxide (NO) synthesis, which was the most evident during the early phase of NO burst (at 3 hpi) during hypersensitive response (HR). In vitro application of dorzolamide and effective inhibitors of NO synthesis confirmed the implication of CA activity in NO metabolism during potato defense. To clarify how suppression of CA carbonate activity translates into the complexity of NO-related responses leading to potato resistance or susceptibility to an oomycete pathogen we analysed expression of NPR, PR1, and PAL.
Taken together, pharmacological damping of CA activity revealed a functional link between CA and NO-dependent signaling in potato defense against P. infestans manifested by accelerated NO formation and a modified salicylic acid defense pathway. The dorzolamide-mediated effective responses for basal resistance also delayed symptoms of late blight in the susceptible potato cultivar, without overcoming HR formation in the resistant one.
Calcium phosphates are of great interest in medicine, biology, agriculture and materials sciences. The present study evaluates the effect of calcium phosphates nanoparticles on biochemical changes in rice. Nanoparticles increased the growth rate and affect the physiology of the plant. Calcium phosphate nanoparticles may help in the formulation of new nano growth promoter and nano-fertilizers for agricultural use. Therefore, it could potentially help in reduction of the quantity of fertilizer applied to crops and contributing to precision farming as it reduces fertilizer wastage and in turn environmental pollution due to agricultural malpractices. However, detail physiological and molecular understanding of its impact on rice crop plant is needed in future to validate its prospective application in agriculture.
Thanks you and your colleague for the great help for our publication. You always provide prompt responses and high quality of service. I am so happy to have you working with me.
Thanks again!
Diana (Ding) Dai
You are such a nice person. Your journal co-operation is very appreciable and motivational.
Department of Biotechnology, Uttaranchal college o...
Archna Dhasmana
"This is my first time publishing with the journal/publisher. I am impressed at the promptness of the publishing staff and the professionalism displayed. Thank you for encouraging young researchers li...
Ekiti State University, Nigeria
Adebukola Ajite
We really appreciate your efforts towards our article, the professional way you handle our request for exemption from charges.
It was a great honor for us to publish in your magazine.
Achraf elbakkaly
Publishing with the International Journal of Clinical and Experimental Ophthalmology was a rewarding experience as review process was thorough and brisk. Their visibility online is second to none as t...
University of Port Harcourt Teaching Hospital, Nig...
Dr. Elizabeth A Awoyesuku
The service is nice and the time of processing the application is fast.
Department of Neurosurgery, Queen Elizabeth Hospit...
Long Ching
I wanna to thank clinical journal of nursing care and practice for its effort to review and publish my manuscript. This is reputable journal. Thank you!
Wollo University, Ethiopia
Atsedemariam Andualem
I would like to mention that I had a wonderful experience working with HSPI. The whole process right from manuscript submission to peer review till the publication of the article was very prompt & eff...
Amarjeet Gambhir
Many thanks for publishing my article in your great journal and the friendly and hassle-free publication process, the constructive peer-review, the regular feedback system, and the Quick response to a...
Azab Elsayed Azab
We appreciate the fact that you decided to give us full waiver for the applicable charges and approve the final version. You did an excellent job preparing the PDF version. Of course we will consider ...
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."