In this work we used semi-isolated heart of the cockroach Nauphoeta cinerea for the investigation of the pharmacological effects of extracts (aqueous, 1:1, 1:2, 1:4 and 1:8) from Nephrolepis exaltata L. leaves, a popular ornamental fern considered to be safe. The use of insects in experimental studies has grown due to the easy handling, proliferation/growing assuring its rapid obtention, and absence of ethical issues. An aqueous extract 0.2 % was obtained after maceration of 1 g N. exaltata leaves powder with 20 mL of distilled water (1:20). Diluted extracts in water were obtained to have the following proportion 1:1, 1:2, 1:4 and 1:8. Experiments (n=4) consisted of 200 µL addition onto semi-isolated heart preparation of N. cinerea with concomitant heart beating counting. Aqueous, 1:1 and 1:2 extracts paralyzed completely the heart beatings of cockroachs (p<0.05 compared to saline control), but not 1:4 or 1:8, which showed only a slight decline (p>0.05 compared to saline control). A preliminary thin layer chromatography showed the presence of unidentified terpenoid in aqueous extract of N. exaltata. These pharmacological findings of N. exaltata can be exploited for future use as insecticide or as dose-dependently cholinergic agent.
Ubiquitination is a kind of posttranslational modification of proteins in eukaryotes, and it plays an important role in the growth and development of organisms. The ubiquitination of proteins is a cascade enzymatic reaction involving three enzymes. The homologous to E6-AP carboxy terminus ubiquitin-protein ligases (HECT E3s) family is an important ubiquitin-protein ligases family. The family all have a HECT domain of approximately 350 amino acids in the C-terminus. However, studies on plant HECT E3s, such as structural features, prediction of HECT domain function, and their regulatory mechanisms, are very limited. In this paper, Arabidopsis thaliana HECT family genes were analyzed, including gene structure and functional domains and its limited known functions in protein degradation, gene transcription regulation, epigenetically regulation or other functions, finally speculate their roles in plant morphologies, aging or responsive to environmental stress.
Rômulo M de Moraes Filho*, Edilton de Albuquerque Cavalcanti Jr, Jackeline Gadé A Rossiter, Angélica Virginia Valois Montarroyos and Luiza Suely Semen Martins
Psidium guajava (guava) is an important crop and economic resource in many tropical countries and Brazil stands out as one of its major commercial producers. The guava crop has been severely attacked by the plant parasitic nematode Meloidogyne enterolobii which has caused drastic reduction of productivity and, in some cases, even total loss of cultivated areas. The use of resistant rootstocks that are tolerant to these soil pathogens can be a low-cost solution to this pathogen, which has established itself as one of the major constraints for the cultivation of guava in Northeast Brazil. The objective of this work was to evaluate the reaction of P. guajava and P. guineense to M. enterolobii infection under greenhouse conditions, with an infection period of 60 days. 12 P. guineense, and 4 P. guajava were evaluated. The host response to the nematode infection was evaluated according to the following parameters: gill index (GI), reproductive factor (RF), and reduction of reproductive factor (RRF). Considering the RRF criteria, the P. guineense genotypes, AR1, AR3, AR4 and AR10 were considered resistant. The RF index was considered inadequate to evaluate resistance in the 60 days period, due the slow development of the parasite in P.guineense.
Vegetable production by grafting is a technique which it has made possible to resume agricultural soils which previously could not be produced due to stress generated by various abiotic factors, like a lack of water, stress by high or low temperatures, and or heavy metal contamination, among them. It has been documented and defined a number of graftings which they are tolerant to different factors; however, when it comes to auscultating information related to understand the molecular responses and observe what are the biochemical changes and physiological responses of grafted plants, it is dispersed. The current paper attempts to provide basic information documented on technique, addressing the molecular, biochemical and physiological responses, and thus get a clear perspective on the use of grafts, making this practice be used with most frequently by all its advantages.
Plant hormones are versatile chemical regulators of plant growth. The concept of hormone ‘interaction’ [1] has gained much importance and several key players of hormonal network are uncovered for major plant hormones. The fact that hormones are structurally unrelated and their interaction elicits different genomic and non-genomic responses suggest hormone interaction involve co-regulation at multiple levels [2]. Recent studies suggest that hormonal interaction involves control over biosynthesis genes [3-6], key components of signalling pathways [7,8], hormone distribution [9,10], and interaction at the level of gene expression [11-13].
Polyamines are aliphatic amines found in all living cells, and they are necessary for several fundamental cell processes. Their protective role against various abiotic stress factors has been reported in different plant species, while the mechanism by which polyamines act during plant-microbe interaction is still poorly understood. The several types of the interactions between the plants and the microbes outline a divers and complex picture of the action mechanisms. The present review focuses on this aspect of the mode of action of polyamines and polyamine metabolism during biotroph and necrotroph interactions between plants and pathogens. It seems that apoplastic metabolism of polyamines of the host and the accumulation of H2O2 as a result of polyamine catabolism play important signalling role in plant-pathogen interactions. The manipulation of the members of the polyamine-induced signalling pathways could increase the host plant resistance to biotic stresses.
Natural dyes have become a viable alternative to expensive and rare organic sensitizers because of their low cost, easy attainability, abundance of supply of raw materials and environmental friendliness. Chlorophyll, the most abundant pigment, can be extracted from plant leaves with simple and inexpensive methods, but it’s difficult to use as a Dye-Sensitized Solar Cells (DSSC) sensitizer due to the absence of OH and COOH groups. The opposite is true for xanthophylls, a particular class of carotenoids that contain free hydroxyl groups and thus may be considered as potential DSSC sensitizers. In this work we describe a new and inexpensive method of chlorophyll extraction from leaves based on the use of a basic solvent that provides the creation of COOH groups, allowing chlorophyll binding on the TiO2 layer. This modified chlorophyll dye showed a higher DSSC efficiency level (0.72%) compared to xanthophylls, which had lower efficiency.
Capsicum spp. is one of the most important economical horticulture crops due to its high consumption either by fresh vegetable or dried spice. Molecular genetic markers offer a number of applications in the genetic improvement of crop plants, which plays an important role in the areas of plant classification and breeding programs. The polygenetic characters of rare species, which are difficult to analyze by traditional methods can, be analyzed easily and classified by using molecular markers. In our study, genetic relationships of twenty-two paprika species were examined to estimate their genetic variations/similarities and to detect the polymorphism present within and among the paprika species by using RAPD-PCR markers. The results revealed that the maximum similarities among the 16 ICBD lines were 100%. The ICBD 03 had 76% similarity compared with other ICBD lines. The CC01 had comparatively low similarity with ICBD forms (30%), followed by EC01 (28%), EC02 (33%), CC02 (35%), and Kt.Pl-19 (60%). The similarity between EC01 and EC02 were 54%. Kt.Pl-19 showed different similarities compared to CC01 (41%), CC02, EC01 (38%), EC02 (29%) and ICBD 03 (40%). The different combinations were tried to optimize the RAPD-PCR profile, which helped to assessing the polymorphism/similarities within and among the Paprika germoplasms were studied.
In order to provide theoretical foundation for forestation of Phyllostachys bambusoides f. shouzhu Yi, the site factors, and the morphological character and biomass of standard bamboo were investigated in 16 sample spots of bamboo forest in Liangping county, Chongqing City, and then the effects of site factors on the clonal growth was discussed. Three site factors as the slope position, altitude, species diversity, had significant effects on the clonal growth of the bamboo. The effects of the gradient, slope aspect, humus thickness, and soil thickness were little, but that of slope aspects was not significant. The altitude of above 800 m, the upper slope, the steep slope and slope, and the thin soil were not suitable for its clonal growth. The results showed that (1) the main site factors affecting the growth of P. bambusoides f. shouzhu were slope position, soil thickness and humus thickness; (2) The forestation site of P. bambusoides f. shouzhu should be selected at the flat ground and the gentle slope of the hills below altitude of 800 m, and the slope position of the forestation site should be selected at the mid and lower position of a hill; (3) Soil thickness and humus thickness should be kept at a suitable level; (4) The diversity of plant species in the bamboo forest should be kept at a suitable level for keeping its growth environment.
Nanoparticles affects growth and development of Plant. Zinc is an important micronutrient that regulates various physiological responses in plant. Application of nanoparticles for modulating plants physiological response is a recent practice. Zinc nanoparticles has been widely used in industry for several decades. However, no significant work had been made on its potential use in agriculture. Understanding physiological effect of Zn NP on rice seed germination could suggest the basis for its prospective application in agriculture to improve plant growth. In the present experiment effect of Zn NP was studied in Kmj-6-1-1 which is a commonly growing rice cultivar of Karimganj district of Assam, India. An exposure to Zn NP (0 mg/L, 5mg/L,10mg/L, 15mg/L, 20mg/L & 50mg/L) caused significant changes in radicle and plumule length , mass ( fresh & dry mass) and seed moisture content in rice. Antioxidant enzymes like guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD) and gluthathione reductase (GR) also increased due to ZnNP treatment. This suggest that Zn NP may significantly alters antioxidant metabolism during rice seed germination. In conclusion, Zn NP protected rice plants from ROS damage by improving levels of antioxidant enzyme activities during germination. As a consequence the Zn NP treated seeds, showed better potential for germination. Further, genomic analysis of germinating rice seeds are needed to elucidate the molecular mechanisms by which Zn NP modulates germination process in rice.
“It was a delightful experience publishing my manuscript with the Clinical Journal of Obstetrics and Gynecology. They offered me lots of opportunities I never had from most publishing houses and the...
Asafo Jones
To the editorial team at HSPI and the Journal of Clinical Nephrology:
Thank you so much for your hard work and collaboration in bringing our article to life. Your staff was responsive, flexible, and ...
Alejandro Munoz
We appreciate the fact that you decided to give us full waiver for the applicable charges and approve the final version. You did an excellent job preparing the PDF version. Of course we will consider ...
Anna Dionysopoulou
Thank you and your company for effective support of authors which are very much dependable on the funds gambling for science in the different countries of our huge and unpredictable world. We are doin...
Russia
Victor V Apollonov
I really liked the ease of submitting my manuscript in the HSPI journal. Further, the peer review was timely completed and I was communicated the final decision on my manuscript within 10 days of subm...
Abu Bashar
We appreciate your approach to scholars and will encourage you to collaborate with your organization, which includes interesting and different medical journals.
With the best wishes of success, creat...
Ivano- Frankivsk National Medical University, Ukra...
Nataliya Kitsera
I am glad to submit the article to Heighten Science Publications as it has a very smooth and fast peer-review process, which enables the researchers to communicate their work on time.
Anupam M
Your journal has accomplished its intended mission of providing very effective and efficient goals in dealing with submissions, conducting the reviewing process and in publishing accepted manuscripts ...
University of Jacqmar, Inc., USA
John St. Cyr
The service is nice and the time of processing the application is fast.
Department of Neurosurgery, Queen Elizabeth Hospit...
Long Ching
The Clinical Journal of Obstetrics and Gynecology is an open access journal focused on scientific knowledge publication with emphasis laid on the fields of Gynecology and Obstetrics. Their services to...
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."