plant health

Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review

Published on: 2nd June, 2017

OCLC Number/Unique Identifier: 7286429206

Soil dwelling bacteria able to colonize plant roots and closely associated soil are referred to as rhizobacteria. A wide range of rhizobacteria has the ability to promote plant growth directly by producing phytohormone and nutrients; and indirectly by controlling plant pathogen. These beneficial bacteria are known as plant growth promoting rhizobacteria (PGPR). PGPR control phytopathogens by producing chemicals that could damage pathogen cells, removing pathogen specific nutrients from the environment, or inducing resistance against pathogen in plant body. Antagonistic bacteria specifically damage pathogens by producing lytic enzymes, antibiotics and bacteriocins; and excluding pathogen from plant environment by siderophores oriented iron chelation. This review highlights the antagonistic feature of PGPR. Application of antagonistic bacteria as biopesticides is an attractive alternate of chemical pesticides. Chemical pesticides are non-targeted and cause pollution during its synthesis as well as at the site of application. Antagonistic bacteria could be used as biopesticides and biofertilizers for better plant health and growth improvement.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Mitigation and adaptation to climate change of plant pathogens

Published on: 7th September, 2022

The impact of climate change on plant diseases poses a serious threat to food security [1-4]. Climate change has a direct effect on the occurrence and severity of disease in crops. Global plant health assessment and crop loss estimation due to pests and diseases has been made especially for cropping regions defined by the major crops of wheat, rice, maize, potato and soybean [5].
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Melaleuca Essential Oil (Melaleuca alternifolia cheel) in the Control of Beans Diseases

Published on: 12th July, 2024

Bean cultivation is vital to the global food and economy, especially in Brazil. Facing challenges from diseases that affect production, it is crucial to seek new strategies to maintain productivity and sustainability. Melaleuca alternifolia, known as the tea tree due to its medicinal properties, has little explored potential in controlling diseases in bean plants. The objective of this work was to evaluate the effectiveness of tea tree essential oil in controlling diseases in bean cultivation. In vitro tests were carried out to evaluate bacterial growth, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). And antibiogram with the bacteria Xanthomonas axonopodis pv. phaseoli, in different concentrations (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2% and 3%). For the fungus Pseudocercospora griseola, sporulation tests were carried out, using direct and indirect methods, at concentrations of (0.0%, 0.05%, 0.1%, 0.5%, 1%, 2%, and 3%). Furthermore, for the fungus Colletotrichum lindemuthianum, mycelial growth tests were carried out with the same concentrations. The experiments took place in vivo, with a completely randomized statistical design, involving five replications per treatment and concentrations varying from (0.0%, 0.05%, 0.1%, 0.5%, 1% and 2%). Disease incidence was assessed using a diagrammatic scale, disease severity, Area under the Disease Progress Curve (AACPD) and Area under the Incidence Progress Curve (AACPI). Melaleuca Essential Oil (EO) inhibited the development of fungi and bacteria in in vitro tests starting at 0.5%. In vivo, Melaleuca Essential Oil (EO) showed a significant reduction in the incidence and severity of the disease from 0.5% in both fungi and bacteria. Melaleuca EO can be an effective alternative for disease control in bean cultivation. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A Review on Heavy Metals in Ecosystems, Their Sources, Roles, and Impact on Plant Life

Published on: 21st August, 2024

The presence of heavy metals (HMs) on Earth is essential to all forms of life. These metals are essential for plant and animal development but can have numerous negative effects on the living environment. In this review, we looked at where HMs come from, why they are harmful, and how they affect plants. Articles indexed in Google Scholar, PubMed, Research Gate, Science Direct, and a few books on heavy metals were consulted for this study. Heavy metals are essential for plant development and growth. According to this analysis, the hazardous effects of HMs are on the rise all throughout the globe, and this trend may be attributed mostly to human activity. Because of its impact on agricultural productivity and environmental changes, soil pollution caused by HMs is among the most crucial elements. Plants have evolved very sophisticated defense systems to deal with these environmental challenges. The threat that HM stress poses to plants has attracted a lot of attention worldwide because it could stunt agriculture’s long-term expansion. In spite of their importance for plants, this study found that HMs pose a significant threat to plant life. The novelty of this review lies in its detailed examination of both the beneficial and detrimental roles of HMs, providing a balanced perspective often overlooked in current literature. The significance of this work is underscored by its potential to inform sustainable agricultural practices and environmental management strategies, as it highlights the delicate balance required to harness the benefits of HMs while mitigating their risks. Despite their necessity for plant development, this review underscores the significant risks HMs pose to plant health and ecosystems.Less than 10 cases have been reported in the literature of the association of germline BRCA1 and Squamous cell Carcinoma – the esophagus. The article focuses on the probable pathogenesis of BRCA1 mutation with non-classic malignancies and the response of Poly adenosine diphosphate ribose polymerase inhibitors (PARP) inhibitors in such a scenario. We report an unusual manifestation of the BRCA1 gene with second primary oesophageal squamous cell cancer occurring five years later to triple-negative breast cancer.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A-Z Journals

Help ?

HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."