The nemesis: SARS-CoV-2 pandemic: Leaving in its wake millions of infections, accompanied by an immense magnitude of morbidity and multitude of mortality, and an unfathomable economic toll, the COVID-19 pandemic has led to a global calamity. An effective and safe COVID-19 vaccine is urgently needed to prevent the disease, thwart the complications and avert deaths resulting from unrestrained transmission of the infection.
The hubris: Vaccine development: While most of the platforms of vaccine candidates have focused on the spike (S) protein and its variants as the primary antigen of COVID-19 infection, various techniques involved include nucleic acid technologies (RNA and DNA), non-replicating viral vectors, peptides, recombinant proteins, live attenuated and inactivated viruses. There are novel vaccine technologies being developed using next-generation strategies for precision and flexibility for antigen manipulation relating to SARS-CoV-2 infection mechanisms.
The elpis: Updates and prospects: There were nine different technology platforms under research and development to create an effective vaccine against COVID 19. Although there are no licensed vaccines against COVID-19 yet, there are various potential vaccine candidates under development and advanced clinical trials. Out of them, one having undergone phase III clinical trials, has become available in some countries for use among the high-risk groups following emergency use authorization. Other COVID-19 vaccines may soon follow the suit.
Conclusion: Hopes and concerns: The hope of benefiting from the vaccine to the extent that it may be the only way to tide over and control the COVID-19 pandemic, is accompanied by the likely fear of adverse effects and opposition in public for COVID-19 vaccination, including the vaccine hesitancy. Further, there is concern among scientific circles that vaccine may have opposite of the desired effect by causing antibody-dependent disease enhancement.
CRISPR technology has presented a path forward for genomic engineering and gene modification. The framework for the use of CRISPR technology to manipulate the human genome is of great interest and the form of its development and application has excited the researchers and biotech communities as the number of publications citing CRISPR gene targeting system has rose predominantly as indexed in PubMed. From a technical standpoint of view, most of us think that this would be relatively straightforward process, but technical feasibility is never the only consideration in doing experiments. Much of the discussion about CRISPR engineering has revolved mostly around its ability for treating disease or editing the genes of human embryos. In the real sense, what the biologists desire about CRISPR is its specificity: the ability to target and determine particular DNA sequences in the genome circuit.
Nucleic acid-based therapy has become an increasingly important strategy for treating a variety of human diseases. In systemic therapy, a therapeutic gene must be delivered efficiently to its target tissues without side effects. To deliver a therapeutic gene such as plasmid DNA (pDNA) or small interfering RNA (siRNA) to target tissues by systemic administration, cationic carriers such as cationic liposomes and polymers have been commonly used as a non-viral vector. However, the binary complex of therapeutic gene and cationic carrier must be stabilized in the blood circulation by avoiding agglutination with blood components, because electrostatic interactions between positively charged complexes and negatively charged erythrocytes can cause agglutination, and the agglutinates contribute to high entrapment of the therapeutic genes in the highly extended lung capillaries. One promising approach for overcoming this problem is modification of the surface of cationic complexes with anionic biodegradable polymers such as hyaluronic acid, chondroitin sulfate, or polyglutamic acid. As another approach, we recently developed a sequential injection method of anionic polymer and cationic liposome/therapeutic gene complex (cationic lipoplex) for delivery of a therapeutic gene into the liver or liver metastasis. In this review, we describe recent advances in the delivery of therapeutic genes by lipid- and polymer-based carrier systems using anionic polymers.
The morphological evolution kinetics and instabilities of alpha helical peptide 3.613, which involves large amount of stored torsional elastic deformation energy (3-40 eV/molecule), is formulated by the variational method based on the connection between the rates of internal entropy production and the changes in the global Gibbs free energy, assuming that one has isobaric irreversible processes under the isothermal conditions. The present mesoscopic nonequilibrium thermodynamic approach relies on the fact that the global Gibbs free energy of helical conformation involves not only the bulk Gibbs free energy of the amino-acid back bone structure but also the interfacial Gibbs free energy of the enclosing cylindrical shell or the cage associated with the side-wall molecular branches, and their interactions with the immediate surroundings. The proposed variational analysis applied directly on the proposed macro-model has furnished a nonlinear integral equation in terms of the normalized and scaled internal and external variables. This allows us to track down the motion of the total pitch height of the alpha polypeptide along the well-defined trajectories in the displacement-time space, dictated not only by the initial configuration of the helix but also through the gradients of the global Gibbs free energy of the strained helical conformation as the main driving force. In the negative manifold, there is a well-defined region below the dynamic instability regime, in which the helical conformation can evolve towards the nonequilibrium stationary states by expanding, or contracting, depending upon whether the interfacial free energy and/or the applied stress system are below or above the well-defined thresholds level dictated by the initial pitch height. The highest life time may be realized along that trajectory, which follows up the threshold level of the interfacial specific Gibbs free energy, which is gs = -315 erg/cm2. In the upper region of the negative manifold, the helical conformations are driven by the very large applied uniaxial tension or the negative pressure induced by the thermal expansion, in the range of p > 1GPa and/or the strong negative interfacial free energies [3-4 pH] or their combinations, they show strong kinematic instabilities, which can cause not only the accelerated unfolding phenomenon but also cause large extensions that end up with the catastrophic decimations by ruptures and fragmentations. In the positive manifold, the aging behavior of the polypeptide follows up a S-shape path having rather speedy aging behavior compared to the negative manifold, which is separated from by a well-defined boundary, which represents the isochoric path having longest relaxation times, which can be achieved with great stability. Finally, one could attempt to estimate the upper limit of the relaxation time of aging for the modern hominin, from samples of exceptional preservations, relying on the present nonequilibrium theory as well as on the very limited knowledge on the post-mortem DNA and the present pitch heights of the modern hominin, which is found to be about 25,840 yrs, with a life expectation of 451,800 yrs. These figures are very close to those calculated for Neanderthals (SH), which are found to be 31,820 yrs and 499,100 yrs, respectively.
The global virome: The viruses have a global distribution, phylogenetic diversity and host specificity. They are obligate intracellular parasites with single- or double-stranded DNA or RNA genomes, and afflict bacteria, plants, animals and human population. The viral infection begins when surface proteins bind to receptor proteins on the host cell surface, followed by internalisation, replication and lysis. Further, trans-species interactions of viruses with bacteria, small eukaryotes and host are associated with various zoonotic viral diseases and disease progression.
Virome interface and transmission: The cross-species transmission from their natural reservoir, usually mammalian or avian, hosts to infect human-being is a rare probability, but occurs leading to the zoonotic human viral infection. The factors like increased human settlements and encroachments, expanded travel and trade networks, altered wildlife and livestock practices, modernised and mass-farming practices, compromised ecosystems and habitat destruction, and global climate change have impact on the interactions between virome and its hosts and other species and act as drivers of trans-species viral spill-over and human transmission.
Zoonotic viral diseases and epidemics: The zoonotic viruses have caused various deadly pandemics in human history. They can be further characterized as either newly emerging or re-emerging infectious diseases, caused by pathogens that historically have infected the same host species, but continue to appear in new locations or in drug-resistant forms, or reappear after apparent control or elimination. The prevalence of zoonoses underlines importance of the animal–human–ecosystem interface in disease transmission. The present COVID-19 infection has certain distinct features which suppress the host immune response and promote the disease potential.
Treatment for epidemics like covid-19: It appears that certain nutraceuticals may provide relief in clinical symptoms to patients infected with encapsulated RNA viruses such as influenza and coronavirus. These nutraceuticals appear to reduce the inflammation in the lungs and help to boost type 1 interferon response to these viral infections. The human intestinal microbiota acting in tandem with the host’s defence and immune system, is vital for homeostasis and preservation of health. The integrity and balanced activity of the gut microbes is responsible for the protection from disease states including viral infections. Certain probiotics may help in improving the sensitivity and effectivity of immune system against viral infections. Currently, antiviral therapy is available only for a limited number of zoonotic viral infections. Because viruses are intracellular parasites, antiviral drugs are not able to deactivate or destroy the virus but can reduce the viral load by inhibiting replication and facilitating the host’s innate immune mechanisms to neutralize the virus.
Conclusion: Lessons from recent viral epidemics - Considering that certain nutraceuticals have demonstrated antiviral effects in both clinical and animal studies, further studies are required to establish their therapeutic efficacy. The components of nutraceuticals such as luteolin, apigenin, quercetin and chlorogenic acid may be useful for developing a combo-therapy. The use of probiotics to enhance immunity and immune response against viral infections is a novel possibility. The available antiviral therapy is inefficient in deactivating or destroying the infecting viruses, may help in reducing the viral load by inhibiting replication. The novel efficient antiviral agents are being explored.
Advances in metagenomics have facilitated population studies of associations between microbial compositions and host properties, but strategies to minimize biases in these population analyses are needed. However, the effects of storage conditions, including freezing and preservation buffer, on microbial populations in fecal samples have not been studied sufficiently. In this study, we investigated metagenomic differences between fecal samples stored in different conditions. We collected 46 fecal samples from patients with lung cancer. DNA quality and microbial composition within different storage Methods were compared throughout 16S rRNA sequencing and post analysis. DNA quality and sequencing results for two storage conditions (freezing and preservation in buffer) did not differ significantly, whereas microbial information was better preserved in buffer than by freezing. In a metagenomic analysis, we observed that the microbial compositional distance was small within the same storage condition. Taxonomic annotation revealed that many microbes differed in abundance between frozen and buffer-preserved feces. In particular, the abundances of Firmicutes and Bacteroidetes varied depending on storage conditions. Microbes belonging to these phyla differed, resulting in biases in population metagenomic analysis. We suggest that a unified storage Methods is requisite for accurate population metagenomic studies.
The biological changes caused by oxidative stress (OS) are known to be involved in the etiology of neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. The brain is particularly vulnerable to OS due to its high lipid content and extensive consumption of oxygen. OS processes, particularly the excessive production of reactive oxygen species (ROS), play a critical role in how neurodegenerative disorders develop. This is evidenced by in vivo studies investigating various biomolecules related to OS, such as products of lipid and DNA oxidation. Accordingly, ROS can also cause oxidative-related damage in neurodegenerative disorders, including dopamine auto-oxidation, mitochondrial dysfunction, glial cell activation, α-synuclein aggregation, excessive free iron, and changes in calcium signaling. Furthermore, excessive levels of cellular oxidants reduce antioxidant defenses, which in turn propagate the cycle of OS. As such, it is increasingly important to determine the linkage between a high intake of antioxidants through dietary interventions and a lower risk of developing neurodegenerative diseases. Indeed, in addition to modulating the immune system, optimal nutritional status is capable of changing various processes of neuroinflammation known to be involved in the pathogenesis of neurodegeneration. Accordingly, a better understanding of the role ROS plays in the etiology of neurodegeneration is needed, along with the identification of dietary interventions that may lead to improved therapeutic strategies for both the treatment and prevention of neurodegenerative disorders. Therefore, this review presents a comprehensive summary of the role of ROS in the pathogenesis of neurodegenerative disorders. In addition, nutrients believed to be useful for mitigating and counteracting ROS are discussed.
“The mind of man is capable of anything….because everything in in it, all the past as well as all the future [Joseph Conrad]”. Why I am using above quote and what is the relation to what point I am coining you will understand its relevant your own as you moving line by line of this write-up. This topic though complex to some people to get understand, but those has strong or at least average background of Space, Physics, Quantum Mechanics, Neuroscience and theory of evolution definitely acquire it. Near distance and physical face to face communication started with the evolution of humankind and changes in each evolution in DNA structure caused to changes in communication patterns from different phonetics to gestures, gestures to voice and voice to voice with different languages.
Mitochondrial and lysosomal dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) leading to deficient energy production and defects in phagocytosis in endosomal-lysosomal pathway respectively. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of inheritance that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. In this review article, we summarized the spectrum of mtDNA depletion disorders along with minor learning of lysosomal storage diseases. This current article offers a perspective on the role of genetics in medical practice and how this role may evolve over the next several years.
In vitro fertilization is one of the most common and effective procedure for thousands of couples worldwide who want to have a child and are unable to do so for various reasons. Diverse studies show that couples who conceive naturally after one year of trying had newborns with an increased risk of prematurity and low birth weight, compared with couples who conceived before completing one year of trying. Children from assisted reproduction (AR), have a 30% increased risk of prematurity and low birth weight, compared with children from infertile fathers. Regarding the conflicting results the present study aimed to record the frequency of genetic, congenital anomalies in children and adolescents who had examined in the last decade to the Clinical Genetics Clinic of the National and Kapodistrian University of Athens whose mothers had undergone assisted reproduction. The research process was conducted at the "Aghia Sofia" Children's Hospital based in Athens. However, the cases that were studied came from all over Greece. Initially, the researcher recorded the cases that came to the clinic of Clinical Genetics and whose conception occurred after technical assisted reproduction. After telephone communication and the consent of the parents, a live appointment was scheduled. In this meeting-interview all the provisions of the investigation and the protocol were asked and some elements of the medical history of the cases were confirmed. The total sample included 230 children and adolescents. The resulting data were recorded on a printed form/questionnaire. Then, they were registered electronically in the program SPSS 25.0 (Statistical Package for Social Sciences) with a specific unit code for each case/patient, followed by the processing and statistical analysis of the data as well as the recording of the results. The gender of the participants was male for 118 participants (51.3%) and 112 females (48.7%). Mean and standard deviation (SD) of maternal, paternal (at the time of delivery) age was equal to 36.38 (5.94) and 39.94 (6.58) respectively. The observed abdormalities were 35.53% psychomotor retardation, 23.68% facial abnormalities, 23.68% spinal cord abnormalities, 21.05% morphological abnormalities, 20.61% short stature, 19.74% developmental disorders, 19.30% heart disease, 16.67% neurological diseases, 14.47% genetic syndromes, 11.40% genital abnormalities, 8.33% limb abnormalities, 7.46% dermatological abnormalities, 6.14% eye abnormalities, 6.14% hypothyroidism, 5.70% endocrine disorders, 5.26%otolaryngology abnormalities, 2.63% disease of kidney, intestine, 2.19% vascular malformations. Regarding the karyotype chromosome analysis by G-banding technique, from the 230 children in: 24 (10.43%) a pathological result was found, in 158 children (68.70%) it was found normal (46, XX or 46, XY by case) without other findings, while in 48 children (20.87%) the test was not performed for various reasons. Regarding the results of molecular analysis (DNA) from the 230 children, in 50 (21.74%) a pathological finding was found, in 56 children (24.35%) no abnormalities were found and in 124 children (53.91%) no molecular analysis was performed for various reasons. In conclusion, the sample of this descriptive study is characterized as uniform in terms of the method of assisted reproduction since 96.24% had followed the classic IVF. Full-term pregnancy was associated with the appearance of malignancy and head morphological abnormalities (64.6%), normal pregnancy was associated with genetic syndromes (18.2%) and facial abnormalities (11.1%). It is recommended the screening oocyte and sperm donors in order to help protect the safety and health of donors, recipients, and future offspring. The present study confirms the association of the presence of congenital anomalies after in vitro fertilization (IVF). However, the absolute risk of developing severe dysplasias after an IVF procedure is limited.
Progeria syndromes are very rare genetic diseases characterized by premature aging changes. There are several phenotypes and variables noted in literature in some cases difficult to specifically classify a specific syndrome. It occurs due to mutation in DNA repair genes. The most common ocular findings are loss of eyebrow and eyelashes, brow ptosis, lid margin changes, entropion, Meibomian gland dysfunction, severe dry eye, corneal opacity, cataract, poor mydriasis, and rod-cone dystrophy. We report this case with all the above ocular manifestations in 19year old teenager with additional finding being retinal detachment.
Deoxyribonucleic acid (DNA) extraction has considerably evolved since it was initially performed back in 1869. It is the first step required for many of the available downstream applications used in the field of molecular biology and forensic science. Blood samples is one of the main body fluid used to obtain DNA. This experiment used other body fluids such as saliva, sweat tears and mucus. There are many different protocols available to perform nucleic acid extraction on such samples. These methods vary from very basic manual protocols to more sophisticated methods included in automated DNA extraction protocols. This experiment used extraction kit (Zymo research). The DNA result from isolated saliva samples on the facemask range from 133.7, 213.6, 599.1 and 209.1 mg/ml. theoretically; such DNA is of much quantity and quality and can be used for forensic investigation when recovered from a crime scene. The DNA from isolated tears samples on the face mask ranges from 707.7, 202.5, 99.2, and 62.6 mg/ml. Theoretically, such DNA is of much quantity and quality and can be used for forensic investigation when recovered from a crime scene. The DNA from isolated tears samples on the face mask ranges from 615.3, 66.2, 78.5, and 68.2 mg/ml. theoretically, such DNA is of much quantity and quality and can be used for forensic investigation when recovered from a crime scene. Extracted DNA from saliva and sweat produced visible bands on agarose gel, mucous stain produce obscure band on agarose gel and the tears stain produce invisible bands. DNA from sweat satin, saliva stain, mucus stain and tears stain in face mask can be used as alternative for forensic investigation.
Kofi Adjapong Afrifah*, Alexander Badu-Boateng, Samuel Antwi-Akomeah, Eva Emefa Motey, Emmanuel Boampong, David Agyemang Adjem, Osei Owusu-Afriyie and Augustine Donkor
DNA identification is very important in cases of high decomposition of dead bodies, in which the bodies cannot be identified by physical means.To compare the results of DNA typing, it is necessary to have related subjects with which to perform comparative analyses. Such tests are normally performed by comparing DNA profiles from people known to be immediate family members of the presumptive victim, such as parents or children because they share half of their genetic material with the unidentified.We report on how DNA analysis was used to solve a case of mixed-up bodies at a local mortuary in Ghana, West Africa. Two families and three buried human remains were in contention in this case. The first body (E9) was buried three months before exhumation. The second body (E11) was buried two and a half months before exhumation whiles the third body (E10) was buried a month before exhumation. Exhibit E5 was taken from an alleged child of the deceased, E11. Toenails of the exhumed bodies were sampled by a pathologist and used for DNA extractions using the QIAamp DNA Investigator Kit. Profiles from relatives were generated for comparison purposes. All samples gave a quality amount of genomic DNA after quantification. DNA was amplified with a GlobalFiler PCR amplification kit. Profiles from relatives were generated for comparison purposes.The human remains (exhibit E11) cannot be excluded as the biological father of the child (exhibit E5) because they share common alleles at all 23 genetic loci. The applicable combined paternity index was 17218125604.492 assuming a prior probability of 0.5. The probability of paternity is 99.99999999%. Based on this relationship testing, one of the bodies was successfully identified and handed over to the family for re-burial.
The objective of this study was to obtain a fast, accurate and reliable method of species identification of unknown biological samples for forensic applications, especially in illegal trade of animals as well as meat fraud. Meat fraud and adulteration not only affects the market but also increases the risk of religious and ethnic conflicts around the world [1]. In this study, species-specific and gender differentiating Real time PCR technique was employed to analyse 15 meat samples collected from a suspected site. Out of 15 samples collected from suspected site, 54% and 13% samples were of Cow and buffalo origin respectively. All 54% cow samples were of male while one each of buffalo were of male and female origin. Two samples were inconclusive. These findings indicated that species and gender-specific PCR is very sensitive and can be used for forensic species identification and the detection of meat fraud and adulteration.
Based on the differences between RNA and DNA, formulas for the natural frequency of torsional vibrations of single and double RNAs are obtained.It is shown that, despite the fact that millimeter waves are delayed by the skin of the human body, there are conditions under which they can freely penetrate through the human body.It is shown that centimeter waves, whose frequencies are multiples of the natural frequencies of torsional vibrations of the spirals of short DNA or RNA viruses, can cause subharmonic resonance in the spirals of RNA and DNA, which leads to the destruction of these molecules. Centimeter waves of non-thermal power flux density freely pass through the human body, which makes it possible to use them in vivo.A table has been compiled with the physical characteristics of DNA and RNA of the most dangerous viruses, indicating the frequencies of the external electromagnetic field that cause resonance in the DNA and RNA helices, which leads to the denaturation of molecules.In a series of experiments, it was shown that irradiation with microwaves with a resonant frequency of 180,402 GHz on samples with COVID-19 for 20 seconds. It has a disinfecting effect.
Panagiotis Antoniadis*, Florentina Alina Gheorghe, Madalina Ana Maria Nitu, Cezara Gabriela Nitu, Diana Roxana Constantinescu and Florentina Duica
Published on: 29th September, 2022
Through the development of new analysis technologies, many issues regarding the approach to tumoral diseases have been elucidated. With analytical assays developed in the last years, various omics technologies have evolved in such a manner that the characteristics of tumor cells and products can be evaluated (assessed) in the bloodstream of cancer patients at different times. Ovarian Cancer (OC) is one of the most difficult to diagnose umors, with low survival rates due to the high heterogeneity of these diseases that are distinct in terms of etiology and molecular characteristics, but which simply share an anatomical appearance. Recent findings have indicated that several types of ovarian cancer classified into different histotypes are in fact derived from non-ovarian issues and share few molecular similarities. Within this context, ovarian cancer screening and diagnosis can be made through the evaluation of circulating tumor cells in peripheral blood using liquid biopsy technologies. Advances in the study of various molecules analyzed by liquid biopsy have shown that elucidation of intratumoural and intertumoural heterogeneity and spatial and temporal tumor evolution could be traced by serial blood tests rather than by histopathological analyses of tissue samples from a primary tumor. Therefore, evaluation of some molecules such as circulating tumor cells (CTC), circulating tumor DNA (ctDNA), circulating cell-free RNA (non-coding and mRNA, extracellular vesicles), tumor-educated platelets or different miRNAs using liquid biopsy could lead to improvement of patient management.
Modern-day biology is witnessing a data explosion with a vast amount of information generated from ongoing genome and sequencing projects. The abundance of data from genome sequences, functional genomics and another high throughput (HTP) technique with the potential of computing has led to rising of a new discipline namely ‘bioinformatics’. Bioinformatics is a young but fast-growing field for biological data collection, organization, interpretation, and modeling. Tools and techniques for bioinformatics are derived from multidisciplinary combinations of varied disciplines from natural and physical sciences. Previously various disciplines were carved out as and when sufficient specialization was achieved. However, now bioinformatics is borne out of an alliance between existing disciplines from life and non-life. Bioinformatics encompasses new foundations for the collection, organization, and mining of gene/ protein sequences, three-dimensional structures, and biochemical functions, for modeling biological processes of functioning cells. DNA sequencing performed on an industrial scale has produced a vast amount of data to analyze. Although the Human Genome Project is officially over, improvements in DNA sequencing continue to be made. The field of forensic science is increasingly based on biomolecular data and many European countries are establishing forensic databases to store DNA profiles of crime scenes of known offenders and apply DNA testing.
Marium Zehra*, Rukhsana Parveen, Muhammad Irfan, Mahrukh Nasir and Sidra Bashir
Published on: 29th December, 2022
Meat species identification has become essential with the increasing events of frauds like the illegal slaughter of cows, meat adulteration, and substitution. Food scam directly influences public well-being, trade, and wildlife. In Pakistan, donkey meat is used as adulterants for cow meat and is considered Haram in Islamic concepts. In this study PCR, based detection methods are used for identification purposes. The mitochondrial gene cytochrome b has been used in this study to identify the origin of meat specie. Specie-specific primers of cyt b of cow and donkey were used for identification. DNA from different binary ratios of cow and donkey meat was extracted by the phenol-chloroform method. Ratios were made from 1-10 and extracted DNA was subjected to PCR to amplify the target fragment of the cyt b gene. Primers were sensitive to identifying species origin in all meat ratios. Multiplex PCR was designed to identify both species and the results were analyzed by gel electrophoresis. Fragment size of 309bp for cow and 475bp for donkey was observed.Results of the current study conclude that PCR assays, including multiplex PCR, is efficient and has a high sensitivity for even small amount of meat. It is concluded that multiplex PCR is useful and reliable for adulterated meat detection.
Hong-xian Deng, Huan-huan Li, Jiu-quan Qiao*, Yan Tong*, Cui-juan Wang and Jiang Liu
Published on: 4th March, 2023
Purpose: Exercise has a positive regulatory effect on gut microbiota and is also involved in regulating multiple physiological functions of the human body. This article tested the effects of basketball exercises at different exercise intensities on the gut microbiota of college students. Methods: Athlete research subjects (male, aged 18 - 25) were selected from the basketball team and trained at different intensities to obtain a total of 101 fresh fecal samples. DNA was extracted by a DNA extraction kit and bacterial 16S rRNA gene V3-V4 region high-throughput sequencing using the Illumina Hiseq platform. The downstream data were spliced, filtered and de-trimerized and then used to study the difference in gut microbiota. Results: Key bacterial taxa in the gut that responded to exercise intensity differed among athletes of different exercise intensities but most belonged to Firmicutes. With increasing exercise intensity, Butyricicoccus, Anaerostipes, Oxalobacter and Clostridium_IV in basketball players enrich. Further analysis of the functional prediction revealed that carbohydrate metabolism, amino acid metabolism, metabolism of xenobiotics and glycans and metabolism were significantly expressed in the gut microbiota of basketball athletes with high intensity. Conclusion: The study demonstrated that after long-term professional training, the gut microbiota of athletes adapts to exercise stimulators and can quickly respond to changes in exercise intensity. In high-intensity training, the organism is protected from harm by enriching some beneficial bacteria.
Alanna N Gillespie, Richard Saffery, Andrew J Daley, Gregory Waller, Bowon Kim, Melissa Wake, Anna Czajko and Valerie Sung*
Published on: 16th June, 2023
Targeted screening for Cytomegalovirus (CMV) in Deaf and Hard of Hearing (DHH) children is now internationally recommended. With newborn genomic screening for DHH children a future possibility, the commercially-available human genomic DNA collection kit (ORACollect, Oragene OCR-100) could enable one single sample to screen for CMV and genetic causes of deafness at scale with minimal additional costs. Our pilot study validated ORACollect against Copan FLOQswabs® (gold standard clinical procedure) for detecting CMV using 15 sets of saliva samples from 14 infants/children, comparing CMV PCR results using different testing protocols. ORACollect stored at room temperature had high sensitivity (up to 89%), specificity (up to 80%) and percent agreement (up to 86%) in detecting CMV DNA compared to FLOQswabs®. This suggests that ORACollect is an appropriate alternative to FLOQswabs® for collecting viral CMV DNA for PCR testing, independent of the DNA extraction approach. This could be revolutionary in facilitating dual genomic and viral screening in newborns and would enable CMV screening in non-tertiary hospital settings where laboratory facilities are not available.
Publishing with the International Journal of Clinical and Experimental Ophthalmology was a rewarding experience as review process was thorough and brisk. Their visibility online is second to none as t...
University of Port Harcourt Teaching Hospital, Nig...
Dr. Elizabeth A Awoyesuku
"This is my first time publishing with the journal/publisher. I am impressed at the promptness of the publishing staff and the professionalism displayed. Thank you for encouraging young researchers li...
Ajite Kayode
We really appreciate and thanks the full waiver you provide for our article. We happy to publish our paper in your journal. Thank you very much for your good support and services.
Ali Abusafia
Your big support from researchers around the world is the best appreciation from your scientific teams. We believe that there should be no barrier in science and you make it real and this motto come ...
Arefhosseinir Rafi
Your journal co-operation is very appreciable and motivational. I am really thankful to your journal and team members for the motivation and collaboration to publish my work.
Assistant Professor, UCLAS Uttaranchal University,...
Archna Dhasmana
I like the quality of the print & overall service. The paper looks quite impressive. Hope this will attract interested readers. All of you have our best wishes for continued success.
Arshad Khan
I am glad to submit the article to Heighten Science Publications as it has a very smooth and fast peer-review process, which enables the researchers to communicate their work on time.
Anupam M
The editorial process was quickly done. The galley proof was sent within a week after being accepted for publication.
The editorial team was very helpful and responded promptly.
India
Rohit Kulshrestha
The services of the journal were excellent. The most important thing for an author is the speed of the peer review which was really fast here. They returned in a few days and immediately replied all o...
Eastern Mediterranean University, Cyprus
Zehra Guchan TOPCU
Your journal has accomplished its intended mission of providing very effective and efficient goals in dealing with submissions, conducting the reviewing process and in publishing accepted manuscripts ...
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."