dna

COVID-19 Vaccines Development: Challenges and Future Perspective

Published on: 9th June, 2025

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbursts began at the end of 2019, which imposed a serious crisis on public health and the economy all over the world. To date, there is no antiviral drug available for SARS-CoV-2, and hence vaccination is the most preferred method to prevent people from getting attacked by this virus, especially for those who are at high risk. To counter coronavirus-2, there are various types of vaccines, which are being used, such as live attenuated vaccines, killed or inactivated vaccines, recombinant vaccines, mRNA vaccines, recombinant vector vaccines, and DNA vaccines. Novavax data shows that the vaccine is effective against severe diseases caused by B.1.351. The Pfizer-BioNTech and AstraZeneca vaccines show evidence of some protection against P.1. Due to the immune response, the Human body can recognize and protect itself against harmful foreign substances such as bacteria, viruses, and microorganisms. The immune system protects our body from these harmful substances by identifying them as antigens. Virus-infected cells release many chemicals such as chemokines and cytokines for the initiation of immune response. To control the pandemic situation, herd immunity is required by the immunization of a critical mass of the world population at once. In this review article, we have made an analysis of the immune response of the human body to SARS-CoV-2 infection, different types, and modes of action of SARS-CoV-2 vaccines along with the current status of vaccines.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Impact of Microplastics on Human Health through the Consumption of Seafood: A Review

Published on: 14th June, 2025

Microplastics (MPs) pose a significant risk to human health, particularly through seafood consumption. Once ingested, MPs can spread from the digestive system to other organs via phagocytosis and endocytosis, leading to toxicological effects. Accumulation of MPs in tissues causes swelling, blockages, oxidative stress, and Cytotoxicity. Studies show MPs alter metabolism, disrupt immune function, and contribute to autoimmune diseases. Chronic exposure has been linked to neurotoxicity, vascular inflammation, and increased cancer risk due to DNA damage. MPs can cross biological barriers, including the placenta, affecting fetal development. Additionally, they serve as vectors for pollutants and bacteria, further complicating health risks. MPs in the bloodstream can trigger inflammatory responses, endothelial adhesion, and red blood cell coagulation, leading to cardiovascular complications. In vitro studies indicate MPs impair renal function and cause long-term inflammation in distal tissues. Moreover, oxidative stress caused by MPs plays a critical role in carcinogenicity. Despite growing evidence of adverse health effects, further research is necessary to understand the full impact of MPs’ exposure on human health and develop effective mitigation strategies.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?

HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."